Thesis Presentation

Signal Classification through Multifractal Analysis and Neural Networks

Group 13

Kevin Cannons

Vincent Cheung

University of Manitoba
Winnipeg, Manitoba, Canada
Advisor: Dr. W. Kinsner

Outline

- Introduction [Kevin]
- Project Overview [Kevin]
- System Design [Kevin]
- Component Design [Kevin and Vincent]
- Experimental Results and Discussion [Vincent]
- Conclusions and Recommendations [Vincent]

Project Overview

- Classification of stochastic, self-similar, nonstationary signals from non-linear systems
- Many real world signals are of this type
- Cannot use traditional analysis techniques such as Fourier transform
- Complex, unique techniques were utilized for the classification system

Signal Classification

- Signal classification means identifying a signal as belonging to a class based on a certain set of features
 - Reveals information about the physical process
- A wide range of applications:
 - Speech signals
 - Power line transients
 - ▶ Internet traffic

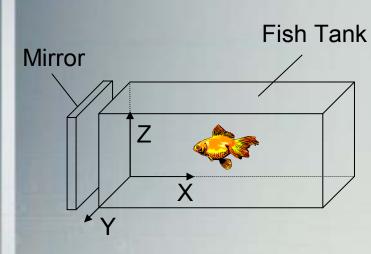
Signal Classification

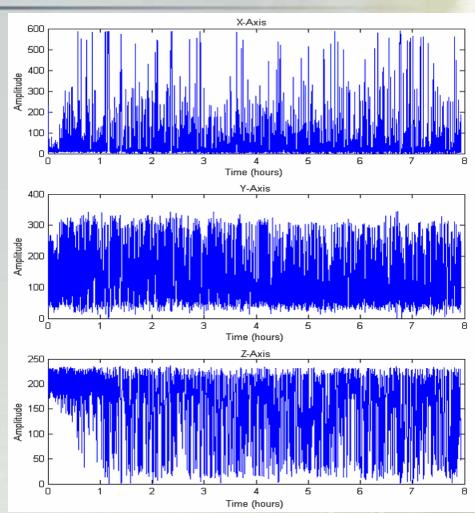
- Classification systems typically involve two main stages
 - Extraction of features
 - Mean
 - Fourier coefficients
 - Wavelet coefficients [Mall98]
 - Classification based on the selected features
 - Expert systems
 - Neural networks

Classification Terminology

- Non-stationary
 - Statistical properties of the signal change over time
- Self-similar
 - "Zooming in" yields a signal with similar statistical properties
 - ▶ Fractals
- Stochastic
 - Events in the signal occur at random
- Non-linear systems
 - Do not obey superposition

Fish Trajectory Signals

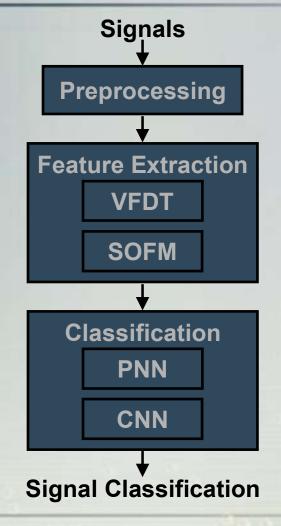




System Design

- Three design constraints
 - ► Correct classification rate greater than 90%
 - Training time less than one day
 - Execution time less than the duration of the input signal

System Design



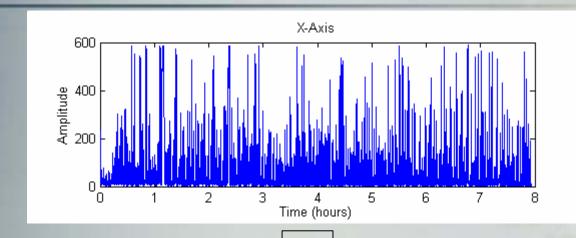
Preprocessing

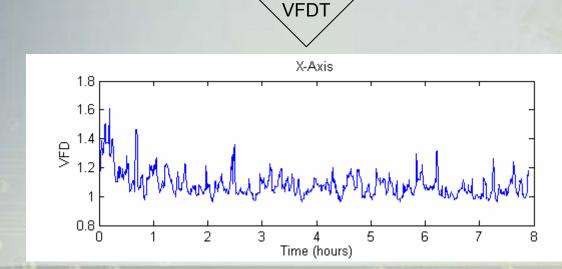
- Converts a signal to an acceptable format for the rest of the system
- Makes the system general
 - ➤ To classify a new type of signal, simply create a new unit within the preprocessor

Variance Fractal Dimension Trajectory

- First feature extraction technique utilized
- Calculates the variance fractal dimension of a small segment of the signal in a sliding-window fashion over the entire signal [Kins94]
- The variance fractal dimension provides information about that portion of the signal
- Variance fractal dimension trajectory has many advantages
 - Emphasizes the underlying complexity of the signal
 - Provides a normalizing effect

Variance Fractal Dimension





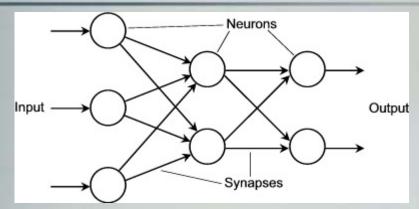
Neural Networks

- Advantages
 - Can learn almost any function
 - Great ability to generalize
 - Robust to noise
- Disadvantages
 - ▶ Complex
 - Requires training
- Ref: [Mast93]

Neural Networks Basics

- Essentially a function approximator
 - Transforms inputs into outputs to the best of its ability
- Training is the method used by a neural networks to "learn" the function that it is approximating
 - Present the network with sample inputs and modifying parameters throughout the network to better approximate the desired function
- There are two main types of training
 - Supervised Training
 - Supplies the neural network with inputs and the desired outputs
 - Unsupervised Training
 - Supplies only inputs

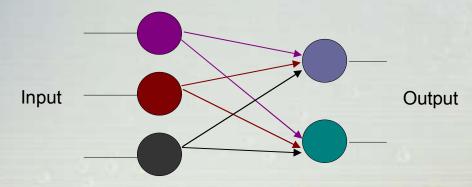
Neural Network Architecture



- Basic multilayer feedforward network consists of two components
 - Neurons
 - Synapses
- Neurons perform calculations
- Synapses connect neurons
 - Are often associated with weights

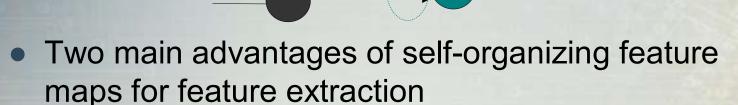
Self-Organizing Feature Maps (SOFM)

- Have a variety of applications including feature extraction and clustering [Koho84]
- Utilize unsupervised training
 - ► The "winning" neuron is the neuron whose weights most closely resemble the input to the network
 - ► The weights of the "winning" neuron and those surrounding it are updated
 - Encourages grouping and clustering



Self-Organizing Feature Maps (SOFM)

 For feature extraction, the self-organizing feature map creates a codebook of the most prominent features, or codewords, that are present within a signal Codeword



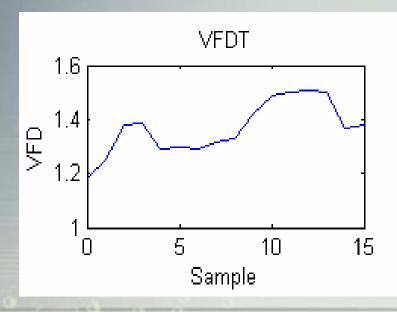
The codebook compresses the features into fewer points

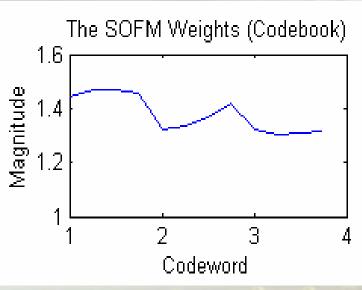
Codebook

The codebook is robust to translational shifting

Self-Organizing Feature Maps (SOFM)

- Without self-organizing feature maps, segments of the variance fractal dimension trajectory are the input for the classifiers
- When including self-organizing feature maps in the system it is the codebook that is used as input to the classifier





Probabilistic Neural Networks

- Neural network implementation of a Bayes classifier [Spec88]
 - eg. Spam filters
- Advantages
 - Asympotically Bayes optimal
 - Good classifiers
 - ▶ Trains orders of magnitude faster than other NNs
- Disadvantages
 - Slower execution than other NNs
 - Require large amounts of memory

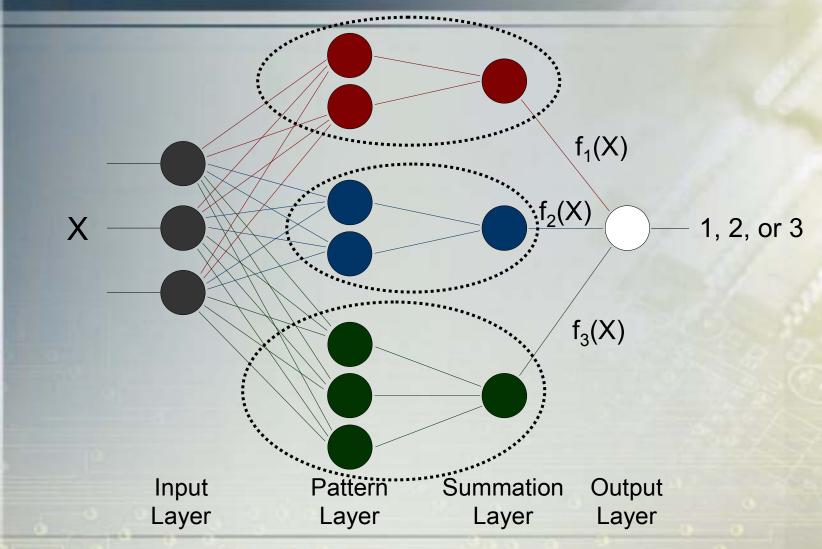
PNN Mathematics

X belongs to class "i" if:

$$f_i(X) > f_k(X) \ \forall \ k \neq i$$
 (f_n is the PDF for class n)

- Don't know PDFs
 - Estimate them based on some examples from each of the classes (training set)

PNN Architecture



Complex Domain Neural Networks (CNN)

Advantages

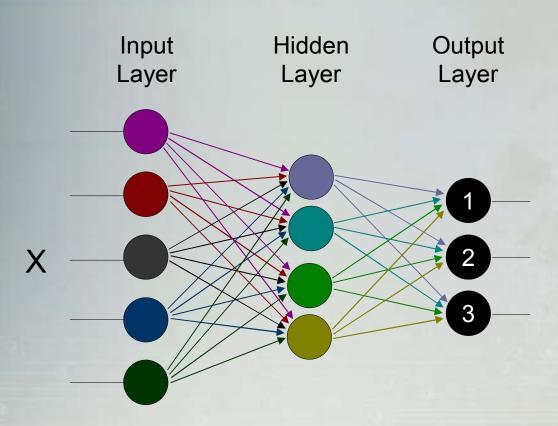
- Works with inputs in their natural complex valued form
- Faster training
- Better generalization

Disadvantages

- More complexity
 - Convoluted partial derivatives involving complex analysis

Ref: [Mast94]

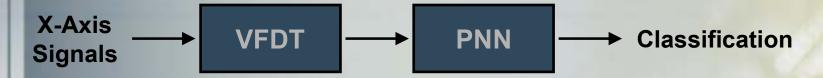
CNN Architecture



Experiment Set-Up

- Use fish trajectory signals to test the system
 - Only use the X and Z axes
 - 2 different fish, 17 recordings in total
 - Objectively defined the classes using clustering algorithms
 - 4 Classes
 - Segments from 9 recordings designated for training, the rest for testing
 - No filtering performed
- Use the training and testing sets with different configurations of the system

Experiment #1



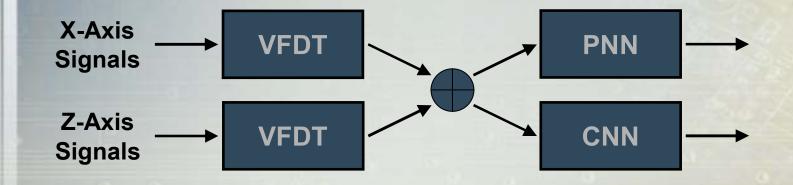
			Experir	Correct			
		1	2	3	4	Class. Rate	
Expected	1	24	0	0	0	100.00%	
	2	3	135	4	4	92.47%	
	3	0	12	111	65	59.04%	
	4	0	23	70	93	50.00%	

Average Correct Classification Rate: 66.73%

95% Confidence Interval: [62.77%, 70.69%]

Experimental Results Summary

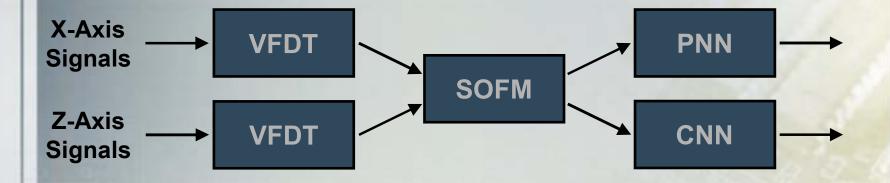
Signal	Classifier	Clas	sificati	Average		
	Classifier	1	2	3	4	Rate (%)
X	PNN	100	92	59	50	67
Z	PNN	63	29	47	91	58
X & Z	PNN	100	95	84	95	91
X & Z	CNN	96	87	80	91	87



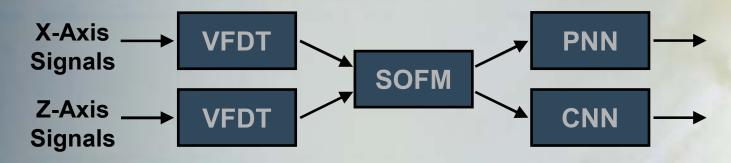
Experimental Results Summary

- Information from both axes important for classification
- Both the PNN and CNN were able to perform classification at rates at high confidence
- The multifractal characterization (fractal dimensions) seemed to provide good features for classification
- Time constraints met in all configurations
 - ► PNN trains faster, CNN executes faster

SOFM Feature Extraction



SOFM Feature Extraction



Signal	Classifier	Average Rate (%)			
Oigilai	Olassilici	VFDT	+ SOFM		
X	PNN	67	66		
Z	PNN	58	61		
X & Z	PNN	91	88		
X & Z	CNN	87	85		

SOFM Experimental Results Summary

- Correct classification rate about the same
- Less features
 - ▶ 12, instead of 16
 - Faster training and execution times
- Compaction of features was successful
 - Removed redundant/irrelevant information

Conclusions

- A system capable of classifying self-similar, stochastic, non-stationary signals originating from non-linear processes was developed
- Met all design constraints
- Feature extraction involving variance fractal dimensions and self-organizing feature maps shown to be effective
- Probabilistic neural networks and complex domain neural networks shown to be capable of performing the desired classification

Recommendations

- Compare with results by psychologists
- Larger training and testing sets
- Add simulated noise to the signals
- Test with other signals
- More advanced PNN (multi-sigma PNN)
- Extension to hypercomplex-valued signals
 - Signals consisting of three or more components

Acknowledgements

- Dr. Kinsner
- Delta Research Group
- Dr. Pear
- Natural Sciences and Engineering Research Council (NSERC) of Canada
- University of Manitoba

References

- [Kins94] W. Kinsner, "Batch and real-time computation of a fractal dimension based on variance of a time series," Technical Report, DEL94-6; UofM; June 15, 1994, (v+17) 22 pp.
- [Koho84] T. Kohonen, Self-Organization and Associative Memory. Berlin: Springer-Verlag, 1984.
- [Mall98] S. Mallat, A Wavelet Tour of Signal Processing. San Diego, CA: Academic Press, 1998.
- [Mast93] T. Masters, Practical Neural Network Recipes in C++. San Diego, CA: Academic Press, Inc., 1993.
- [Mast94] T. Masters, Signal and Image Processing with Neural Networks: A C++ Sourcebook. New York, NY: John Wiley & Sons, Inc., 1994.
- [Spec88] D.F. Specht, "Probabilistic neural networks for classification, mapping, or associative memory", *IEEE International Conference on Neural Networks*, vol. 1, pp. 525-532, July 1988.

Thesis Presentation