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Project Overview

● Classification of stochastic, self-similar, non-
stationary signals from non-linear systems

● Many real world signals are of this type

● Cannot use traditional analysis techniques such as 
Fourier transform

● Complex, unique techniques were utilized for the 
classification system
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Signal Classification

● Signal classification means identifying a signal as 
belonging to a class based on a certain set of 
features
► Reveals information about the physical process

● A wide range of applications:
► Speech signals
► Power line transients
► Internet traffic
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Signal Classification

● Classification systems typically involve two main 
stages
► Extraction of features

■ Mean
■ Fourier coefficients
■ Wavelet coefficients [Mall98]

► Classification based on the selected features
■ Expert systems
■ Neural networks
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Classification Terminology

● Non-stationary
► Statistical properties of the signal change over time

● Self-similar
► “Zooming in” yields a signal with similar statistical 

properties
► Fractals

● Stochastic
► Events in the signal occur at random

● Non-linear systems
► Do not obey superposition
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Fish Trajectory Signals
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System Design

● Three design constraints
► Correct classification rate greater than 90%
► Training time less than one day
► Execution time less than the duration of the input signal
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System Design

Preprocessing

Feature Extraction
VFDT

SOFM

Signals

Signal Classification

Classification
PNN

CNN
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Preprocessing

● Converts a signal to an acceptable format for the 
rest of the system

● Makes the system general
► To classify a new type of signal, simply create a new unit 

within the preprocessor
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Variance Fractal Dimension Trajectory

● First feature extraction technique utilized

● Calculates the variance fractal dimension of a 
small segment of the signal in a sliding-window 
fashion over the entire signal [Kins94]

● The variance fractal dimension provides 
information about that portion of the signal

● Variance fractal dimension trajectory has many 
advantages
► Emphasizes the underlying complexity of the signal 
► Provides a normalizing effect 
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Variance Fractal Dimension

VFDT
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Neural Networks

● Advantages
► Can learn almost any function
► Great ability to generalize 
► Robust to noise

● Disadvantages
► Complex
► Requires training

● Ref:  [Mast93]
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Neural Networks Basics

● Essentially a function approximator
► Transforms inputs into outputs to the best of its ability

● Training is the method used by a neural networks 
to “learn” the function that it is approximating
► Present the network with sample inputs and modifying 

parameters throughout the network to better approximate 
the desired function

● There are two main types of training
► Supervised Training

■ Supplies the neural network with inputs and the desired 
outputs

► Unsupervised Training
■ Supplies only inputs
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Neural Network Architecture

● Basic multilayer feedforward network consists of two 
components
► Neurons
► Synapses

● Neurons perform calculations

● Synapses connect neurons
► Are often associated with weights
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Self-Organizing Feature Maps (SOFM)

● Have a variety of applications including feature 
extraction and clustering [Koho84]

● Utilize unsupervised training
► The “winning” neuron is the neuron whose weights most 

closely resemble the input to the network
► The weights of the “winning” neuron and those 

surrounding it are updated
■ Encourages grouping and clustering

Input Output
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Self-Organizing Feature Maps (SOFM)

● For feature extraction, the self-organizing feature 
map creates a codebook of the most prominent 
features, or codewords, that are present within a 
signal

● Two main advantages of self-organizing feature 
maps for feature extraction
► The codebook compresses the features into fewer points
► The codebook is robust to translational shifting

Codebook

Codeword
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Self-Organizing Feature Maps (SOFM)

● Without self-organizing feature maps, segments of the 
variance fractal dimension trajectory are the input for the 
classifiers

● When including self-organizing feature maps in the system it 
is the codebook that is used as input to the classifier
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Probabilistic Neural Networks

● Neural network implementation of a Bayes
classifier [Spec88]
► eg. Spam filters

● Advantages
► Asympotically Bayes optimal

■ Good classifiers
► Trains orders of magnitude faster than other NNs

● Disadvantages
► Slower execution than other NNs
► Require large amounts of memory
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PNN Mathematics

● X belongs to class “i” if:

fi(X) > fk(X) ∀ k ≠ i

● Don’t know PDFs
► Estimate them based on some examples from each of 

the classes (training set)

(fn is the PDF for class n)
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PNN Architecture

Input
Layer

Pattern
Layer

Summation
Layer

Output
Layer

X

f1(X)

f2(X)

f3(X)

1, 2, or 3
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Complex Domain Neural Networks (CNN)

● Advantages
► Works with inputs in their natural complex valued form
► Faster training
► Better generalization

● Disadvantages
► More complexity

■ Convoluted partial derivatives involving complex analysis

● Ref:  [Mast94]
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CNN Architecture

X

Input
Layer

Hidden
Layer

Output
Layer
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Experiment Set-Up

● Use fish trajectory signals to test the system
► Only use the X and Z axes
► 2 different fish, 17 recordings in total
► Objectively defined the classes using clustering 

algorithms
■ 4 Classes

► Segments from 9 recordings designated for training, the 
rest for testing

► No filtering performed

● Use the training and testing sets with different 
configurations of the system
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Experiment #1

95% Confidence Interval:  [62.77%, 70.69%]

50.00%93702304

59.04%651111203
92.47%4413532

100.00%000241
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Class. Rate
Experimental

Average Correct Classification Rate:  66.73%

VFDT ClassificationPNNX-Axis
Signals
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Experimental Results Summary

8791808796CNNX & Z

4321
Average
Rate (%)

Classification Rate (%)ClassifierSignal

91958495100PNNX & Z
5891472963PNNZ
67505992100PNNX

O
ve

rv
ie

w
D

es
ig

n
R

es
ul

ts
C

on
cl

us
io

n

VFDTX-Axis
Signals

VFDTZ-Axis
Signals CNN

PNN



Cheung/Cannons26 / 34

Thesis Presentation

Experimental Results Summary

● Information from both axes important for 
classification

● Both the PNN and CNN were able to perform 
classification at rates at high confidence

● The multifractal characterization (fractal 
dimensions) seemed to provide good features for 
classification

● Time constraints met in all configurations
► PNN trains faster, CNN executes faster
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SOFM

SOFM Feature Extraction

VFDTX-Axis
Signals

VFDTZ-Axis
Signals CNN

PNN
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SOFM Feature Extraction

SOFM
VFDTX-Axis

Signals

VFDTZ-Axis
Signals

CNN

PNN

6667PNNX
6158PNNZ
8891PNNX & Z
8587CNNX & Z

+ SOFMVFDT
Average Rate (%)ClassifierSignal

O
ve

rv
ie

w
D

es
ig

n
R

es
ul

ts
C

on
cl

us
io

n



Cheung/Cannons29 / 34

Thesis Presentation

SOFM Experimental Results Summary

● Correct classification rate about the same

● Less features
► 12, instead of 16
► Faster training and execution times

● Compaction of features was successful
► Removed redundant/irrelevant information

O
ve

rv
ie

w
D

es
ig

n
R

es
ul

ts
C

on
cl

us
io

n



Cheung/Cannons30 / 34

Thesis Presentation

Conclusions

● A system capable of classifying self-similar, 
stochastic, non-stationary signals originating from 
non-linear processes was developed

● Met all design constraints

● Feature extraction involving variance fractal 
dimensions and self-organizing feature maps 
shown to be effective

● Probabilistic neural networks and complex domain 
neural networks shown to be capable of 
performing the desired classification
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Recommendations

● Compare with results by psychologists

● Larger training and testing sets

● Add simulated noise to the signals

● Test with other signals

● More advanced PNN (multi-sigma PNN)

● Extension to hypercomplex-valued signals
► Signals consisting of three or more components
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