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Introduction

● Classification of signals that are:
► Stochastic
► Self-affine
► Non-stationary
► Multivariate
► From non-linear systems

● Eg. multi-channel speech signals, multi-lead ECGs
or EEGs
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Fish Dishabituation Signals
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System Design
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Variance Fractal Dimension Trajectory

● Temporal multifractal characterization
► Calculate the variance fractal dimension of a small 

segment of the signal in a sliding-window fashion over 
the entire signal [Kins94]

► Reveals the underlying complexity of the signal
► Provides a normalizing effect

● Advantages of the variance fractal dimension
► Easy to compute

■ Measure the variance of amplitude increments at different 
scales

► Can be computed in real-time
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VFDT Plot

VFDT
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Self-Organizing Feature Maps (SOFM)

● Topology-preserving neural networks using 
competitive unsupervised learning [Koho84]

● Two uses in this paper
► Clustering

■ Aid in constructing the training and testing sets
► Feature Extraction

■ Dimensionality reduction
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Probabilistic Neural Networks

● Neural network implementation of the Bayes
optimal decision rule [Spec88]
► eg. Spam filters

● Advantages
► Asympotically Bayes optimal

■ Good classifiers
► Trains orders of magnitude faster than other NNs

● Disadvantages
► Slower execution than other NNs
► Require large amounts of memory
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Complex Domain Neural Networks (CNN)

● Advantages
► Works with inputs in their natural complex valued form
► Faster training
► Better generalization

● Disadvantages
► More complexity

■ Convoluted partial derivatives involving complex analysis

● Ref:  [Mast94]
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CNN Architecture
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Experiment #1
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Experimental Results Summary
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SOFM Feature Extraction
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Conclusions

● A system capable of classifying self-affine, 
stochastic, non-stationary, multivariate signals 
originating from non-linear processes was 
developed

● Feature extraction involving variance fractal 
dimensions and self-organizing feature maps 
shown to be effective

● Probabilistic neural networks and complex domain 
neural networks shown to be capable of 
performing the desired classification
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