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Variance fractal dimension trajectory
Kohonen self-organizing feature map
Probabilistic neural network

» Complex domain neural network

'Experimental Results and Discussion

e Conclusion
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assification of signals that are:
IStochastic
Self-affine
Non-stationary
Multivariate

» From non-linear systems

- Eg. multi-channel speech signals, multi-lead ECGs

or EEGs
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Dishabituation Signals

Fish Tank
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m Design

Signals

Feature Extraction

VFDT

SOFM

Classification

PNN

CNN

Signal Classification
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nce Fractal Dimension Trajectory

Temporal multifractal characterization

» Calculate the variance fractal dimension of a small
segment of the signal in a sliding-window fashion over
the entire signal [Kins94]

» Reveals the underlying complexity of the signal
» Provides a normalizing effect

‘o Advantages of the variance fractal dimension

» Easy to compute

m Measure the variance of amplitude increments at different
scales

» Can be computed in real-time
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rganizing Feature Maps (SOFM)

opology-preserving neural networks using
ompetitive unsupervised learning [Koho84]

WO uses in this paper

» Clustering
m Aid in constructing the training and testing sets
~ » Feature Extraction

m Dimensionality reduction
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bilistic Neural Networks

Neural network implementation of the Bayes
ptimal decision rule [Spec88]
» eg. Spam filters

Advantages
» Asympotically Bayes optimal
m Good classifiers
» Trains orders of magnitude faster than other NNs

e Disadvantages
» Slower execution than other NNs
» Require large amounts of memory
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lex Domain Neural Networks (CNN)

dvantages

Works with inputs in their natural complex valued form
» Faster training

» Better generalization

Disadvantages

» More complexity
m Convoluted partial derivatives involving complex analysis

e Ref: [Mast94]
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rchitecture

Hidden Output
Layer Layer
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iment #1

Experimental

Correct
1 2 3 4 | Class. Rate
4 1 24 0 0 100.00%
£ 2| 3 |135| 4 | 4 92.47%
:',- 3 0 12 | 111 | 65 59.04%
E 4 0 23 | 70 | 93 50.00%

Average Correct Classification Rate: 66.73%

95% Confidence Interval: [62.77%, 70.69%)]
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e VFDT —>m—> Classification
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rimental Results Summary

i Classification Rate (%) Average
Classifier 5
1 2 3 4 Rate (%)
PNN 100 92 59 50 67
Z PNN 63 29 47 91 58
X&Z PNN 100 95 84 95 91
X&Z CNN 96 87 80 91 87
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Feature Extraction

VFDT /'m_’

X-Axis >
Signals

Z-Axis _, RV Y
Signals >
0
Signal | Classifier |__\verage Rate (%)
| VFDT + SOFM
' X | PNN 67 =
Z PNN 58 =
X&Z | CNN a7 Ao
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lusions

A system capable of classifying self-affine,
stochastic, non-stationary, multivariate signals
originating from non-linear processes was
developed

Feature extraction involving variance fractal
dimensions and self-organizing feature maps
shown to be effective

e Probabilistic neural networks and complex domain
neural networks shown to be capable of
performing the desired classification
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