CCECE 2003

Signal Classification through Multifractal Analysis and Complex Domain Neural Networks

V. Cheung, K. Cannons, W. Kinsner, and J. Pear*

Department of Electrical & Computer Engineering Signal and Data Compression Laboratory *Department of Psychology University of Manitoba, Winnipeg, Manitoba, Canada

May 5, 2003

Outline

Introduction

- Background
 - Variance fractal dimension trajectory

CCECE03

Cheung

- Kohonen self-organizing feature map
- Probabilistic neural network
- Complex domain neural network
- Experimental Results and Discussion
- Conclusion

16

2/16

Introduction

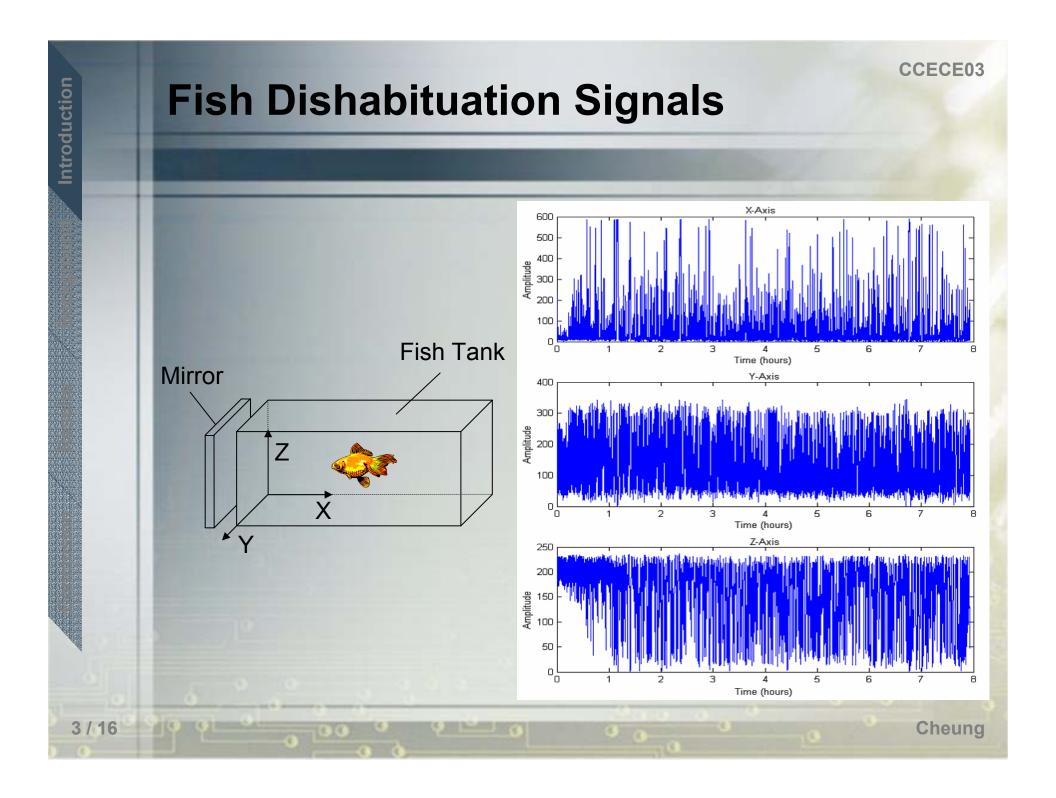
• Classification of signals that are:

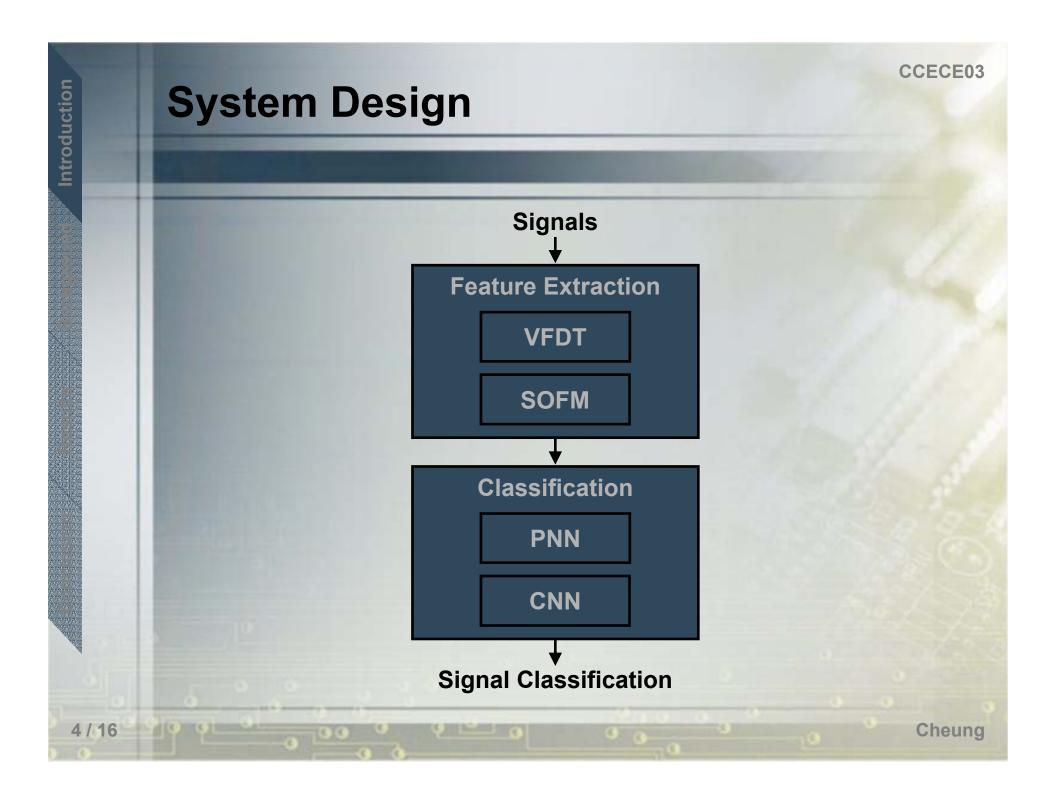
- Stochastic
- Self-affine
- Non-stationary
- Multivariate
- From non-linear systems

 Eg. multi-channel speech signals, multi-lead ECGs or EEGs

CCECE03

Cheung





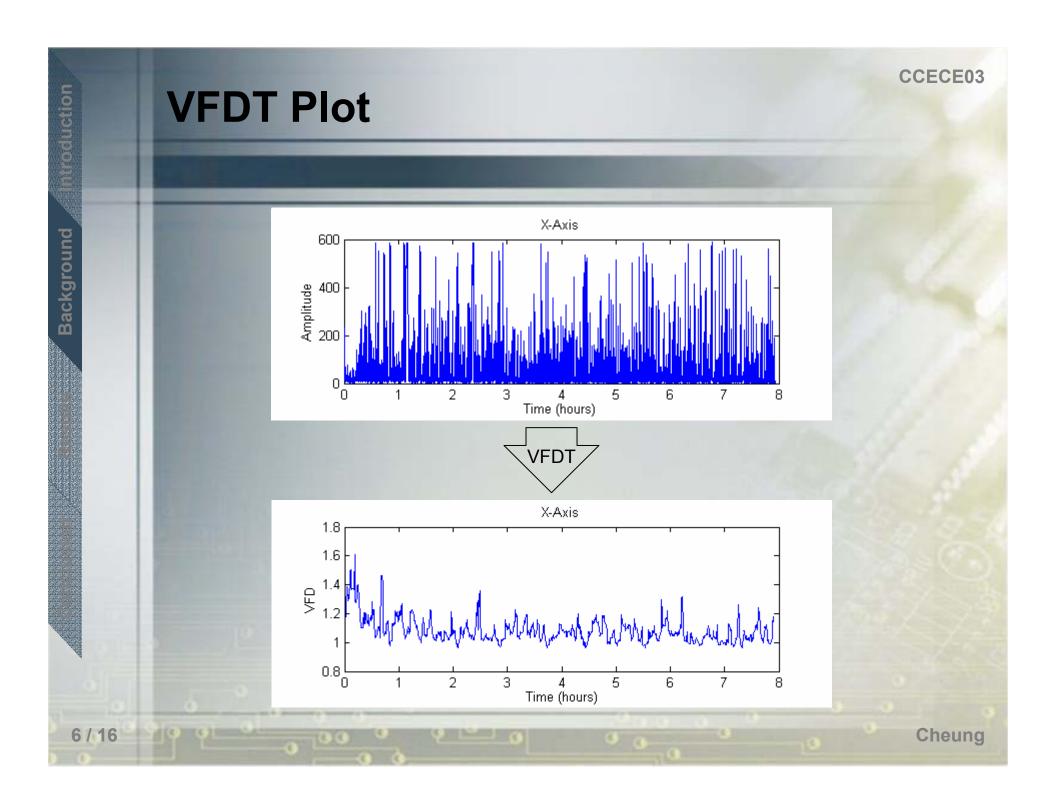
Variance Fractal Dimension Trajectory

CCECE03

Cheung

Temporal multifractal characterization

- Calculate the variance fractal dimension of a small segment of the signal in a sliding-window fashion over the entire signal [Kins94]
- Reveals the underlying complexity of the signal
- Provides a normalizing effect
- Advantages of the variance fractal dimension
 - Easy to compute
 - Measure the variance of amplitude increments at different scales
 - Can be computed in real-time



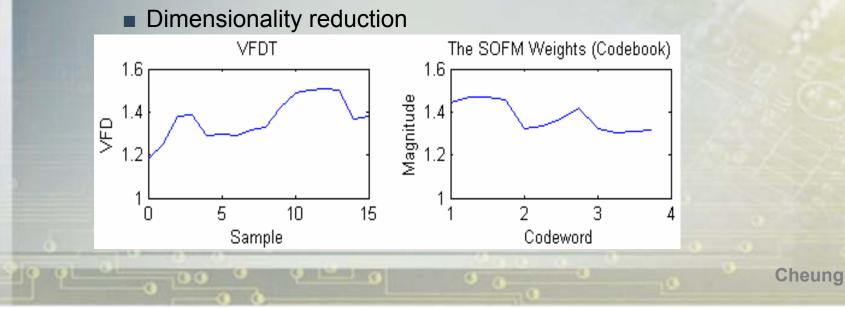
Self-Organizing Feature Maps (SOFM)

- Topology-preserving neural networks using competitive unsupervised learning [Koho84]
- Two uses in this paper
 - Clustering

Background

16

- Aid in constructing the training and testing sets
- Feature Extraction



CCECE03

Cheung

Probabilistic Neural Networks

Neural network implementation of the Bayes optimal decision rule [Spec88]

eg. Spam filters

Advantages

- Asympotically Bayes optimal
 - Good classifiers
- Trains orders of magnitude faster than other NNs

Disadvantages

- Slower execution than other NNs
- Require large amounts of memory

Complex Domain Neural Networks (CNN)

Advantages

- Works with inputs in their natural complex valued form
- Faster training
- Better generalization

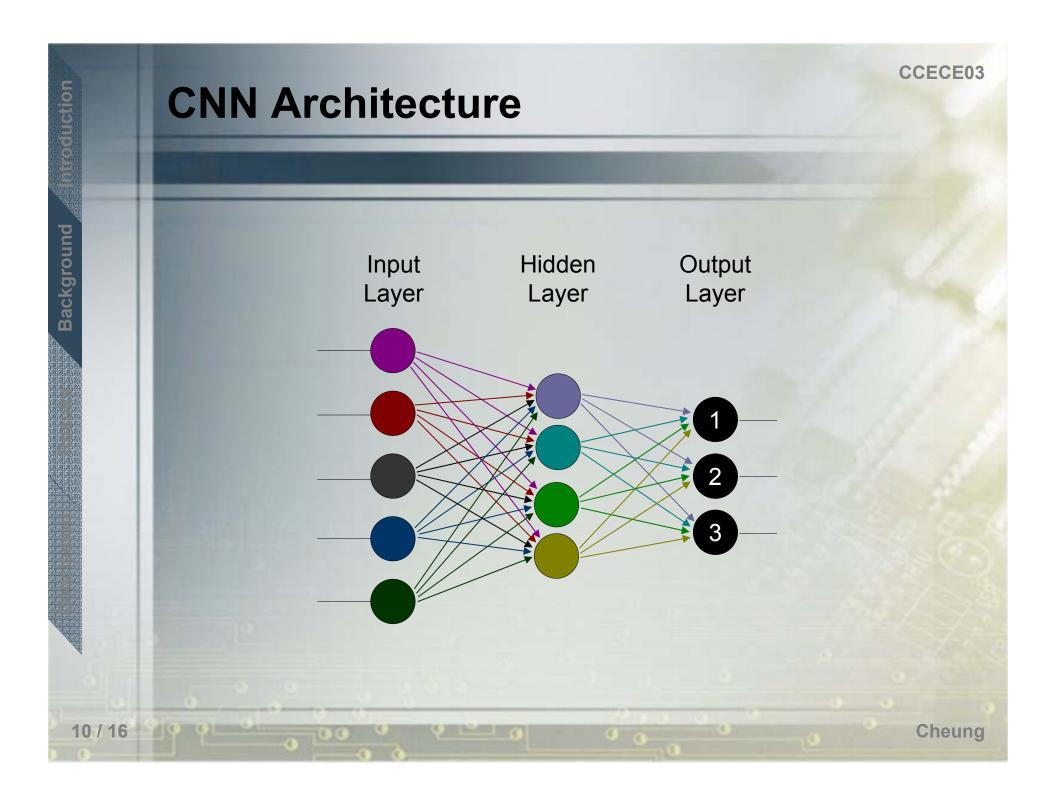
Disadvantages

- More complexity
 - Convoluted partial derivatives involving complex analysis

Cheung

Ref: [Mast94]

16



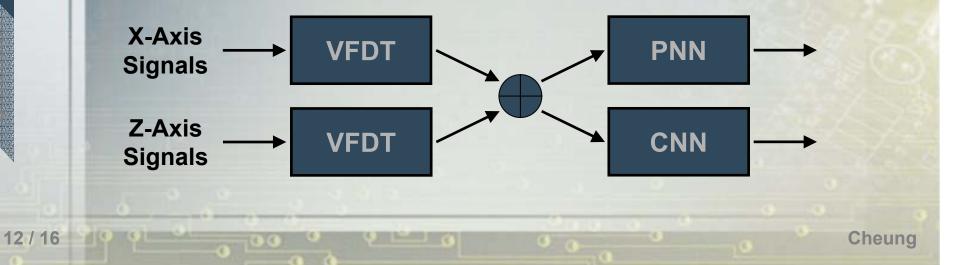
X-Ax Sign		→	VFDT		PI	NN	→ Classificatio		
			Experimental			Correct			
			1	2	3	4	Class. Rate		
	7	1	24	0	0	0	100.00%		
	Expected	2	3	135	4	4	92.47%		
	xpe	3	0	12	111	65	59.04%		
	ш	4	0	23	70	93	50.00%		
	Average Correct Classification Rate: 66.73%								
	9	5% C	onfiden	ce Inte	rval: [6	2.77%	6, 70.69%]		

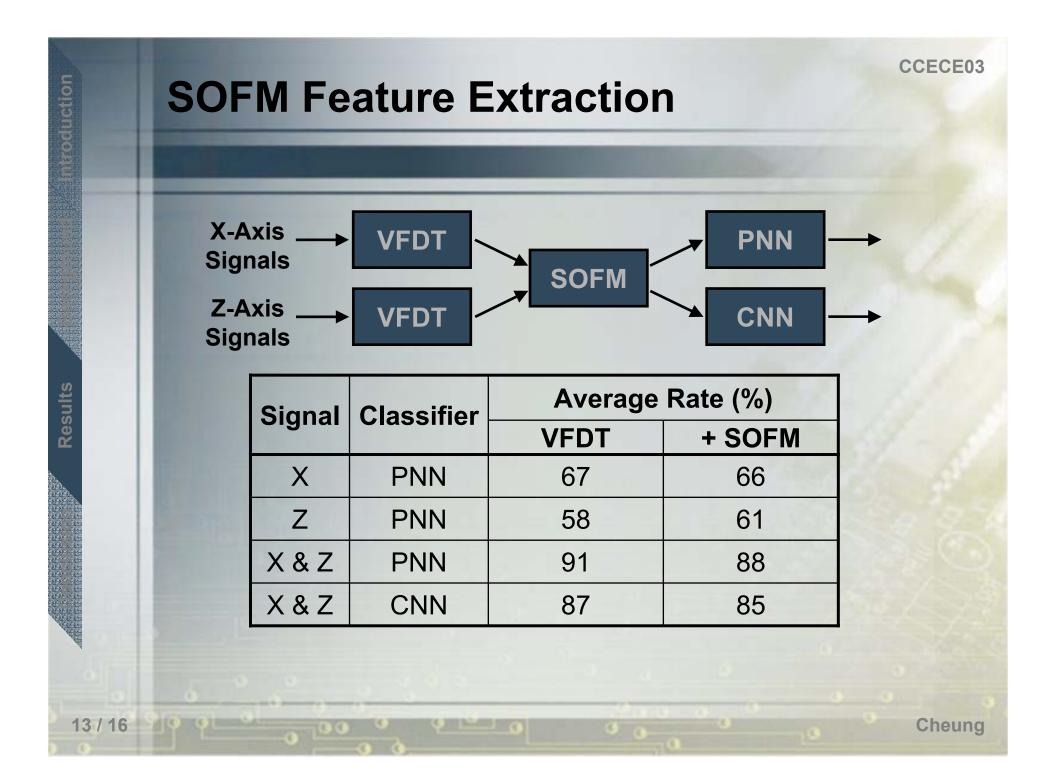
CCECE03

Experimental Results Summary

Signal	Classifier	Clas	sificati	Average			
Olgilai	Classifier	1	2	3	4	Rate (%)	
X	PNN	100	92	59	50	67	
Z	PNN	63	29	47	91	58	
X & Z	PNN	100	95	84	95	91	
X & Z	CNN	96	87	80	91	87	

Results





Cheung

Conclusions

- A system capable of classifying self-affine, stochastic, non-stationary, multivariate signals originating from non-linear processes was developed
- Feature extraction involving variance fractal dimensions and self-organizing feature maps shown to be effective
- Probabilistic neural networks and complex domain neural networks shown to be capable of performing the desired classification

Cheung

References

[ChCa03] V. Cheung and K. Cannons, Signal Classification through Multifractal Analysis and Neural Networks. BSc Thesis. Dept. of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, 106 pp., 2003.

[Kins94] W. Kinsner, "Batch and real-time computation of a fractal dimension based on variance of a time series," Technical Report, DEL94-6; UofM; June 15, 1994, (v+17) 22 pp.

[Koho84] T. Kohonen, Self-Organization and Associative Memory. Berlin: Springer-Verlag, 1984.

[Mast94] T. Masters, Signal and Image Processing with Neural Networks: A C++ Sourcebook. New York, NY: John Wiley & Sons, Inc., 1994.

[Spec88] D.F. Specht, "Probabilistic neural networks for classification, mapping, or associative memory", IEEE International Conference on Neural Networks, vol. 1, pp. 525-532, July 1988.