196 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 2, MARCH 2006

Special Issue Correspondence

Signal Classification Through Multifractal Analysis and
Complex Domain Neural Networks

Witold Kinsner, Senior Member, IEEE, Vincent Cheung, Kevin
Cannons, Joseph Pear, and Toby Martin

Abstract—This paper describes a system capable of classifying stochas-
tic self-affine nonstationary signals produced by nonlinear systems. The
classification and the analysis of these signals are important because these
are generated by many real-world processes. The first stage of the sig-
nal classification process entails the transformation of the signal into the
multifractal dimension domain, through the computation of the variance
fractal dimension trajectory (VFDT). Features can then be extracted from
the VFDT using a Kohonen self-organizing feature map. The second stage
involves the use of a complex domain neural network and a probabilistic
neural network to determine the class of a signal based on these extracted
features. The results of this paper show that these techniques can be success-
ful in creating a classification system which can obtain correct classification
rates of about 87% when performing classification of such signals without
knowing the number of classes.

Index Terms—Classification, complex domain neural network (CNN),
multifractal analysis, probabilistic neural network (PNN).

1. INTRODUCTION

This paper investigates the development of a software system that is
capable of classifying stochastic, self-affine, nonstationary signals that
originate from nonlinear systems. Such signals are often multivariate,
and the system described in this paper has the ability to take these
multivariate signals into account during the classification process.

The features used for classification are based on a temporal mul-
tifractal characterization of the signal, which is achieved through the
computation of its variance fractal dimension trajectory (VFDT) [1].
This translation into the temporal multifractal dimension domain em-
phasizes the underlying complexity of the signal and more impor-
tantly, for classification, has a bounding effect. The classification based
on these features is performed by a complex domain neural network
(CNN) that can operate upon signal features from separate but strongly
correlated signals, without losing the correlation between the signals.
Furthermore, CNNs often generalize more effectively and train faster
than their real-valued counterparts.

Manuscript received February 28, 2004; revised September 30, 2004. The
work of W. Kinsner was financially supported in part by the Natural Sciences
and Engineering Research Council of Canada through a summer scholarship
and a grant. This paper was recommended by Guest Editor Y. Wang.

W. Kinsner is with the Department of Electrical and Computer Engineer-
ing and the Institute of Industrial Mathematical Sciences, University of Mani-
toba, Winnipeg, MB R3T 5V6, Canada and also with the Telecommunications
Research Laboratories, TRLabs, Winnipeg, MB R3T 6AS8, Canada (e-mail:
w.kinsner@ieee.org).

V. Cheung and K. Cannons were with the Department of Electrical and
Computer Engineering, Signal and Data Compression Laboratory, Univer-
sity of Manitoba, Winnipeg, MB R3T 5V6, Canada. They are now with
the Department of Electrical and Computer Engineering, University of
Toronto, Toronto, ON MS5S 3G4, Canada (e-mail: vincent@psi.utoronto.ca;
kevin.cannons@utoronto.ca).

J. Pear and T. Martin are with the Department of Psychology, University of
Manitoba, Winnipeg, MB R3T 2N2, Canada (e-mail: pear@cc.umanitoba.ca;
ummarti7@cc.umanitoba.ca).

Digital Object Identifier 10.1109/TSMCC.2006.871148

Amplitude [mm]

ke i s

Time [hours]
@

400 . . bl L

Amplitude [mm]

Du 1 2 3 4 5 [3 7 8
Time[hours)
(b)
250 ; , Lhvis ; ;
E 200
2 150
g
£ 10
Eﬂ |l
U 1 1 - 1 1 1
0 1 2 3 4 5 3 7 8
Time[hours)
()
Fig. 1. Fish trajectory signal along the (a) x, (b) y, and (c) z directions.

While the classification system implemented for this paper is not spe-
cific to any particular signal, spatio-temporal recordings of a Siamese
fighting fish when presented with various stimuli during dishabituation
experiments were used to evaluate the performance of the system. Ha-
bituation refers to a decrease in responsiveness to a repeated stimulus;
the restoration of this responsiveness is referred to as dishabituation,
which was performed in these experiments through the introduction of
a different stimulus. A stereoscopic camera system was used to track
and record the three-dimensional (3-D) Cartesian coordinates of the
fish over an 8-h period. A sampling rate of ten samples/s was used
for these recordings, which is valid according to the Nyquist sampling
theorem and the known physical limits of the fish [2]. Each sample
in the signal was recorded with an accuracy of two decimal places.
Finally, the recording device performed no filtering of the signal and
thus, did not alter its bandwidth.

A sample of this dishabituation signal is shown in Fig. 1. Stim-
uli applied during these experiments were on the y—z plane at X = 0
mm and on the x—y plane at approximately Z = 225 mm. Since there
were no stimuli along the y axis and it was the least accurate be-
cause it was resolved indirectly through the stereoscopic vision, the
Y-component of the signal was not used for classification in this pa-
per [2]. An added difficulty in analyzing these signals was that they

1094-6977/$20.00 © 2006 IEEE

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 2, MARCH 2006 197

contained an unknown number of classes, but this was overcome using
clustering algorithms.

An overview of the desired behavioral analysis and the techniques
used in this paper for classification of the behavioral classes is
provided in Section II. Details of the experiments performed with
the dishabituation signals and the classification system are presented
in Section III.

II. BACKGROUND
A. Animal Behavioral Analysis

Experimental analysis is an effective means of discovering laws that
govern the interaction between animal behavior and its environment.
Because behavior is a continuous phenomenon, this effort requires that
we subdivide or classify behavior in some way.

One way to form response classes is to create contingencies that are
satisfied by a variety of response topographies and to study selected
properties of any behavior that satisfies those contingencies. For ex-
ample, a rat in an experimental chamber may be trained to depress a
lever, and the frequency of this behavior will be a function of which
lever presses, if any, produce access to food. This approach of defining
functional response classes has helped to produce powerful and general
learning principles, but the effects of the experimental contingencies on
other properties of the behavior often go unstudied. That is, the rat can
do many different things that will lower the lever and may be engaged
in a variety of activities between lever presses.

The computer-aided video tracking system described here measures
behavior in a way that captures its continuity and diverse topographies,
but the problem of classification remains: how do we efficiently extract
interesting and relevant portions of behavior and relate these behaviors
to environmental events? The system can easily generate so much
data that it becomes very difficult to try to identify recurring patterns
through visual inspection. The techniques described in this paper are
an important step towards the automated identification and analysis of
topographical response classes. Combining this data with analysis of
functional response classes is certain to help produce a more complete
science of animal behavior.

B. VFDT

Classification of signals directly in the time domain is generally im-
practical because of the considerable number of recorded data points.
Extracting features from the signal not only reduces the classification
problem size, but it also makes the classification problem easier since
the features summarize the significant characteristics of the signal. The
feature extraction technique used in this paper for classification is a
transformation into the temporal multifractal dimension domain by
computing a VFDT [1]. An advantage of using the VFDT for classifi-
cation is that it emphasizes the underlying complexity of the signal and
thus helping to provide the unique identification for each class. An-
other advantage is that the transformation provides a bounding effect
because the theoretical range of fractional dimensionality of Euclidean
one-dimensional (1-D) signal is between one and two. A final impor-
tant advantage of the VFDT is that it can be computed in real time,
which broadens its possible applications significantly.

Before proceeding with a more detailed description of the VFDT,
the concepts of fractals and fractal dimensions are explained. The fish
trajectory signals that are being examined in this paper are, among
other things, self-affine in nature. Self-affinity means that regardless of
the magnification used when viewing an object, the object’s statistical
properties, structure, and complexity remain constant [3]. Fractals, in
the simplest sense, are self-affine entities. As a result, fractal analysis

techniques serve as an appropriate means for processing the signals in
this paper.

An important characteristic of a fractal is its fractal dimension.
The most familiar dimensions are the Euclidean dimensions that are
discrete integral numbers. For instance, a line is considered to be a 1-D
object, while a square a two-dimensional (2-D) object, and a cube a
3-D object. However, it is also possible for objects to exhibit fractional
dimensions. In fact, the term fractals was coined to describe objects that
have a dimension that is nonintegral. The Koch curve, for example, is
a fractal curve with a dimension of approximately 1.2619 [4], meaning
that it has a greater complexity than a straight line, but is not quite as
complex as a 2-D object.

The significance of the dimensionality of an object is that it pro-
vides valuable information regarding the object’s complexity, which
in this context, refers to the singularities in the object. There are an
infinite number of fractal dimensions, such as the topological dimen-
sion, box-counting dimension, self-similarity dimension, and informa-
tion dimension. For an object with a single power law relationship (a
monofractal), all the dimensions are the same. For an object that is a
mixture of monofractals (a multifractal), the values of the dimensions
are different. For the purposes of this paper, only one form of fractal
dimension, the variance fractal dimension [1], is utilized to perform
feature extraction.

The variance fractal dimension is based on calculations involving
the variance of the amplitude increments of a signal taken at different
scales. The amplitude increments of a signal over a time interval At
adhere to the following power law relationship:

Val‘[l'(tg) - x(tl)] ~ |t2 — t1‘2H (1)

where z(t) represents the signal and H is the Hurst exponent. The
Hurst exponent can be calculated via a log-log plot using

1 log[Var(Ax) a]

H = lim - 2
A0 2 log(At) o

The variance fractal dimension D, is then given by
D,=E+1-H 3)

where FE is the Euclidean dimension. The Euclidean dimension is equal
to the number of independent variables in the signal. Thus, since this
paper concentrates solely upon Euclidean 1-D signals, E' can be set to
1. Equation (3) then reduces to

D, =2—H. 4

The process of calculating the VFDT of a signal essentially involves
segmenting the entire signal into numerous subsignals, or windows,
and calculating the variance fractal dimension for each of these win-
dows. The choice of the window size is a very important aspect of
the process and is specific to the type of signal under analysis. Gener-
ally, the window size is chosen to match the stationarity of the signal
being studied. A second important parameter of the VFDT is the win-
dow displacement, which is the number of samples that the window
is shifted for each calculation of the variance fractal dimension. If
the window displacement is selected such that it is smaller than the
window size, then the windows used in calculating the VFDT will
overlap. It is not necessary that the windows overlap; however, us-
ing overlapping windows amplifies the details of the VFDT because
the same points in the original signal are involved in multiple win-
dows while computing the VFDT. However, the displacement should

198 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 2, MARCH 2006

not be given an extremely small value since this would result in sig-
nificant windowing artifacts because of the excessive correlation be-
tween windows. Of the two parameters, the determination of the win-
dow displacement is more subjective in nature and usually determined
experimentally.

This sliding window computation is significant in that it reveals the
changes in the variance fractal dimension of the signal over time, which
is shown in this paper to provide valuable information for classification
purposes. Such a signal that produces anonconstant VFDT is a temporal
multifractal signal. Conversely, should the VFDT be computed from
a simple monofractal signal, then the resulting VFDT will simply be
constant.

The representation of a signal by its VFDT facilitates classification
by the CNN. The VFDT provides a usable set of features upon which
classification can be performed because of the dimensionality reduc-
tion, underlying feature exemplification, and boundedness that resulted
from the transformation into the multifractal domain.

C. CNN

Complex domain three-layer feedforward neural networks [5] are
used in this paper to perform classification based upon the variance
fractal dimensions.

Neural networks that work with real-valued inputs are sufficient for
most situations, but when the inputs to the neural network are naturally
represented as complex numbers, it is advantageous to use a neural
network that takes this representation into account. The fish trajectory
signal examined in this paper is a multivalued signal where each sample
consists of three values, one for each of the Cartesian coordinate axes.
For this particular signal, the majority of the significant information lies
along two of the axes. Correspondingly, the signal can be viewed as a
complex valued signal, whereby samples from the z axis are used as
the real part of the samples in the complex valued signal and samples
from the z axis are used as the imaginary part. The reason for this
representation is that it emphasizes that the trajectories along each of
the axes are not independent; rather, they are strongly correlated.

Complex valued data can be provided to a real domain neural net-
work by separating the components of the complex values and provid-
ing them separately as inputs; however, any correlation between the
components is lost. While in theory, real-valued neural networks have
the same ability as CNNS, in practice, the training of CNNSs is typically
faster and they often generalize better, especially when only a sparse
training set is available [5].

The architecture of complex domain three-layer feedforward neural
networks is similar to their real domain counterparts; the main dif-
ferences are that each input value and weight is a complex number
consisting of both a real and imaginary part. The activation function
used in this paper for the neurons is a scaled version of the hyperbolic
tangent function tanh(1.5 x) [6] which is applied to the magnitude of
the complex valued input and then multiplied by the unit vector of the
input so that the output of the activation function maintains the same
direction as the input [5].

This paper uses a single output neuron for each class in order to
perform classification. Since the output neurons result in binary deci-
sions for the inclusion or exclusion of an input to a particular class, it
is inefficient to employ complex-valued outputs as it does not aid in
making the classification decision. Thus, for classification purposes,
the imaginary part of the output of these neurons is discarded and the
decisions are based solely upon the real part of the output. The network
is trained to have the output neuron corresponding to the input vector’s
class produce a value of 0.9 and with the rest of the output neurons

producing —0.9. The classification decision for a given input is then
based upon which output neuron produces the highest activation.

The network is restricted to a single hidden layer in this paper since
additional layers would increase the complexity of the network as well
as the training time substantially, while not adding to the network’s
ability to classify or generalize significantly because a three-layer neu-
ral network is sufficient in nearly all situations. The number of neurons
to place in this layer has a significant effect on the network’s ability to
perform the desired operation and the speed at which it executes and
trains. The heuristic which specifies that the number of hidden neurons
should be set to the geometric mean of the number of input and output
neurons is used in this paper. Through experimentation, it was discov-
ered that this heuristic provides a good balance in that there are enough
neurons to learn the desired function without simply memorizing the
inputs and the network is restrained to a reasonable size so that the
training and execution time of the network is acceptable.

The training of the network is performed using a squared error
cost function and the standard backpropagation algorithm extended to
operate with complex values. The partial derivates of the error of the
output with respect to the real and imaginary parts of the weights is
used as the error gradient to indicate the direction with which to modify
the weights. The modifications of the weights in each epoch is given
by

Oe
Wnew,ear = Woldyeq — X7 (5)
aujOldreal
Oe
wnew;mdg = wold;mag - aaw a (5b)
old;

imag

where ¢ is the output error, w is the weight in the network, the real and
imag subscripts indicate the real and imaginary parts of the weights,
and « is the learning rate. The full derivation of the error gradients
shown in (5a) and (5b) can be found in [5].

D. Probabilistic Neural Network (PNN)

An alternative to the CNN for classification is the PNN. The PNN is
an implementation of the Bayes optimal decision rule in the form of a
neural network [7]. PNNs have a number of advantages over traditional
neural networks in that they tend to train orders of magnitude faster and
their classification accuracy asymptotically approaches Bayes optimal
decision rule. However, PNNs require a comparatively large amount of
memory and more time to execute.

As ameans of introduction, the mathematical concepts behind PNNs
will first be presented, followed by a description of how these ideas can
be molded into the framework of a multilayer feedforward neural net-
work. The first concept that requires introduction is the Bayes optimal
decision rule and how it pertains to classification. Consider a case in
which there are a number of objects known to be derived from a number
of different classes. Simply put, the goal of a classifier is to identify
to what class a new unidentified object belongs. The Bayes optimal
decision rule for determining which class an unidentified object should
be assigned to is expressed as follows, in which the object is assigned
to class % provided that

hici fi(X) > hjc; f;(X), J# (6)
where hy, is the prior probability that new object belongs to class k, c;,
is the cost of misclassifying an object that belongs to class k, and f;
is the probability density function (PDF) of class k. It must also be
noted that X is the input vector that will be classified. Typically, when
dealing with PNNss, the prior probabilities and cost of misclassification

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 2, MARCH 2006 199

are not known a priori, and are made to be equal; hence, Bayes optimal
decision rule reduces to

This rule indicates that if the PDFs of the different classes are known,
then the best classification decision can be made by merely making a
few simple comparisons. Unfortunately, the probability distributions
of the different classes are not usually known and are much too com-
plicated to attempt to approximate with simpler distributions.

In order to circumvent the problem of unknown probability dis-
tributions, Parzen introduced a method for approximating the PDFs
of each class by using training samples from each of the classes [8].
Mathematically, the PDF for a single class can be approximated using
the following, where o is a smoothing parameter, W is the weighting
function, X is the unknown input sample to be classified, X is the
kth training input from the ith class, n; is the number of training inputs
for class ¢, and g; (x) is the PDF estimate for class i:

gi(X)—?;JIZ;W(XJX”‘) ®)

. 7

As the number of sample inputs n for class ¢ increases, the PDF
estimate approaches the true PDF for class i. When all of the PDF
estimations are calculated, they are used in (7) in place of the true
PDFs and the classification decision is made. By using a Guassian
weighting function, the following is obtained, where p is the length of
the input vector X:

X — X |?
gi(X) = *'} ©)

1 n; H
(2m)r/20Pn; Zexp [_ 202

The scaling parameter ¢ dictates how wide an area the weighting
function takes into account when determining the contributions of each
training sample. If o is selected to be too small, then only those training
samples that are extremely close to the unknown input will have any
major contribution to the estimated PDFs. As a result, the classifica-
tion system simply breaks down to a nearest neighbor classifier. If,
however, the o selected is too large, then even training samples that
are separated by a great distance from the unknown input will have a
large contribution to the estimated PDFs, causing the system to display
matched filter behavior. Hence, some effort must be put forth to find an
appropriate scaling parameter for the particular classification problem.
Fortunately, in most problems, there is a range of values that will yield
acceptable results [9]. Since there is typically a plateau of o values
producing optimal results, extremely intense algorithms do not have to
be utilized to find an exact superior ¢ value.

Now that the mathematics behind the PNN has been described, the
manner in which it is mapped to the architecture of a multilayer feed-
forward network, as first performed by Specht [7], will be summarized.
The architecture of a PNN is organized into four layers: the input layer,
pattern layer, summation layer, and output layer, as illustrated in Fig. 2.

The input layer accepts input values from the outside world and
then distributes those inputs to each of the neurons in the pattern layer.
Each neuron in the pattern layer corresponds to a training sample of the
PNN. The function of each pattern layer neuron is to compute the result
of the weighting function. There is a single summation layer neuron
for each class. A summation layer neuron accepts the result of the
weighting functions for each training vector belonging to its class and
then calculates the sum in (8). There is only one neuron in the output
layer in the basic PNN. The output neuron performs the classification
of the input according to the Bayes optimal decision rule from (7). This

Pattern
Layer

Summation Qutput
Layer Layer

Input
Layer

Fig. 2. Basic architecture of a PNN.

neuron accepts all the results from each of the summation neurons and
selects the class that generates the largest sum.

Learning in this neural network entails the optimization of the scaling
parameter o. The particular cost function that is optimized in this paper
is jackknifing or leave-one-out cross-validation. At its roots, single o
optimization is merely a single variable optimization problem. Opti-
mization problems are typically easily resolved provided the function
one that is attempting to optimize is known. The process of differen-
tiating the function and setting the result to zero yields the function’s
minima and maxima. However, in the case of optimizing o, this process
cannot be done easily and other optimization means must be used. The
only way to find the globally optimal o value is to search the entire
problem space. However, this is obviously not a practical solution as it
would require an infinite amount of time. Fortunately, with PNNs there
is usually a rather broad range of acceptable o values; hence, a sim-
ple optimization algorithm can be used to produce acceptable results.
Consequently, a simple and fast two step line minimization algorithm
is used here [10].

The learning procedure used in this paper begins by attempting to
bound the minimum. This process entails the selection of several trial &
values within a given range and then evaluating each trial o to observe
how it performs. When complete, the algorithm returns three o values.
The middle o produces the best results out of the trial o values. The
first and third o values returned are the trial points to the immediate
left and right of the middle o value. Because of the nature of the prob-
lem space, the bounded minimum in this interval is generally quite
optimal.

The minimum bounded by this interval is then determined with a
sectioning algorithm, which usually locates the minimum after a small
number of trial points. This portion of the line minimization algorithm
begins with the best o produced in the bounding stage. The algorithm
compares the distance between the current minimum o value and its
left neighbor, as well as the current minimum o value and its right
neighbor. The algorithm selects the larger of the two intervals in order
to search for a better minimum. The value of the new trial o, located in
the larger of the two intervals, is dictated by the particular sectioning
algorithm used. In bisectioning, the most intuitive case, the trial o is
the point in the middle of the interval; of course, the interval could
be sectioned in any number of other ways. If the trial o produces a
better result than the current best o, then the optimal ¢ and its bounds
are updated. On the other hand, if the trial o does not outperform the
current best o, the optimal ¢ remains the same, but the bounding points
are altered to narrow the search interval. This process is repeated until it
is determined that the current optimal o produces sufficiently accurate

200 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 2, MARCH 2006

results or the bounded interval gets so small that new trial o points are
only slightly different from the current best o.

E. Kohonen Self-Organizing Feature Map (SOFM)

Kohonen SOFMs [11] can be used as a clustering algorithm to de-
termine the classes of signals. SOFMs can also be used to perform
feature extraction upon the VFDT prior to classification. SOFMs are
neural networks that employ unsupervised competitive learning algo-
rithms. These neural networks are referred to as topology-preserving in
that the neighborhood relations of the data are preserved and structure
is imposed upon the neurons in the network. This clustering of the
data based on their relations allows for the discovery of the underlying
structure of the data.

An SOFM is composed of just two layers of neurons: an input layer
and an output layer. The neurons in the output layer simply output the
Euclidean distance (or the square of the Euclidean distance) between
its weights w;; and the input, as shown in the following, where n is the
number of inputs to the network:

n

out; = Z(wﬂ — input;)?.

i=1

(10)

The neuron that has the smallest output is declared the winner. It is
this winner that is allowed to have its weights updated and hence the
competitive nature of the learning. Training of the network is performed
by modifying the weights of the winner neuron to make it more closely
resemble the following input, where w is the neuron weight, index &
signifies the winner neuron, index ¢ is the input neuron, and 7 is the
learning rate:

Whinew = Whigg TN (mputi — “’k'iold)

x klout, < out;Vj # k. (11)

In addition, the surrounding neurons also have their weights updated
during training, in order to encourage groupings and clusterings. It is
this group learning from which the SOFM attains its power. The aim of
the training is to have similar inputs activate neurons in the same area.
The function that dictates which nearby neurons also learn is referred to
as the neighborhood function. There are many different neighborhood
functions that can be used, such as a constant, linearly decreasing, ex-
ponentially decreasing, or Mexican hat, which uses negative learning
rates in an attempt to isolate the groupings more distinctly [12]. How-
ever, the neighborhood function has little overall effect on the SOFM
as long as enough training is permitted for the network to converge to a
steady state. This paper uses a constant neighborhood function where
all neurons within a designated distance, or radius, of the winner neu-
ron have their weights updated at the same rate as the winner neuron.
A heuristic is used whereby the radius of the neighborhood function
decreases along with the learning rate as the training progresses. Using
this technique, the SOFM initially roughly defines the clusters when
the radius and learning rate are high and then refines these clusters as
training progresses and the radius and learning rate are decreased.

There are two common ways in which the neurons in the output layer
can be organized. The first is simply in a 1-D array, and the second is
in a 2-D matrix. The main difference between these layouts is how the
neighborhood function is defined, in that for the 2-D case, there are
neighboring neurons in multiple directions that may have their weights
updated. This paper does not consider this type of SOFM as the signals
used in this paper are represented as 1-D vectors and do not require the
extra complexity of the 2-D SOFM.

The primary manner in which SOFMs are used in this paper is for
feature extraction of signals. The number of weights in the SOFM is

K-Axis

1.8 T T T T T T T
16 B
o 1.4 B
P 1 “J\)W ! W MMN)w
[MW U bl |

DE L 1 L L 1 1 1
0 1 2 3 4 5 6 7 8

Time [hours]
(a)
Z-Axis

1.8 T T T T T T T
16 R B
MW s _

|

= N gy

1 . . L L . L A
0 1 2 3 4 5 6 7 8

Time [hours]
(b)
Fig. 3. VFDTs of the fish trajectory signal from Fig. 1.

typically less than the length of the signal that is used to train it. Hence,
when the SOFM is presented with segments from the signal, the weights
of the SOFM have to adjust such that they represent the predominant
characteristics that are present in the signal. In other words, the weights
are adjusted such that they represent the most prominent features in the
signal. When training is complete, the set of weights contained in the
SOFM are commonly referred to as the codebook, as it contains a set
of codes representative of the signal. These weights, or codes, within
the codebook are known as codewords, and each codeword represents a
specific feature that the SOFM found within the signals. In addition to
the reduction in the number of features representing the signal, the use
of SOFMs provides some translational robustness in that signals which
are mere translations of one another result in very similar codebooks.

The second way in which SOFMs are used for this paper is to
derive the different classes from the signals by exploiting the SOFM’s
clustering abilities. Clustering algorithms are not the main focus of
this paper but are utilized to form the training and testing sets for the
purpose of classification since the annotations of the signals used in
this paper were not provided. A more thorough discussion of the use
of SOFM for clustering can be found in [2].

III. EXPERIMENTAL WORK

A. Computational Setup

The dishabituation signals were segmented into lengths of 4096
samples, the longest period of constant behavior of the fish, and the
classes of each of the segments were determined through clustering
of the x and z axis segments in the time domain with a Kohonen
SOFM [2]. To train the classification system, a training set of 612
segments, each consisting of 4096 samples, from nine recordings was
used. The testing set applied to the system was made up of 544 segments
from eight recordings that were not used for the training set.

No filtering was performed upon the signals prior to the computation
of the VFDTs used to construct the training and testing sets. The
VFDTs were computed using a window size of 2048 samples, the
largest window in which the fractal dimension of the signals remained
constant. This length of 2048 samples, or about 3.4 min, as determined
by the signal’s monofractality can be considered as a weak-stationarity

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 2, MARCH 2006 201

VvFDT The SOFM Weights {Codebook)
18 16
. @ b
141, / 7—_ T 14 N -\
o TN — 2 — N
> 12 712
=
1 1
0 a 10 15 1 2 3 4
Sample Codewaord

Fig. 4. VFDT segment and its codebook.

measure. A window displacement of 256 samples was used as it was
discovered experimentally to give a good resolution of the VFDT while
yielding a substantial dimensionality reduction.

Fig. 3 shows the VFDT of the signal from Fig. 1 along the = and 2
directions. The first thing to note about the VFDT plot is that the fractal
dimensions of the signal changes, indicating that it is multifractal in
time. It can further be noted that the samples of the VFDT are bounded
dimensions between 1 and 2, which is essential for the classification
process. Additionally, the VFDT plots visually seem to correspond
to the time domain plots in that they tend to emphasize some of the
characteristics in the original signal; the most exemplary characteristic
being the initial large changes in the VFDT signals which correspond
to the irregular motion of the fish as seen in the time-domain plot.

In the configurations of the system using the SOFM, feature ex-
traction is performed upon these VFDT segments. The SOFMs can be
used to extract features from VFDT segments which consist of a single
recording or multiple recordings. In order to facilitate the extraction
of features from segments involving multiple recordings, the record-
ings are merely appended to each other prior to being presented to the
SOFM.

For the formal experiments used to verify the different configura-
tions of the classification system, the SOFM was configured to use three
codewords, each of which had a length of four. This combination means
that 12 features are extracted from each VFDT segment. The configu-
ration of three codewords with a length of four apiece was selected as
it yielded very good experimental results. Scenarios where fewer code-
words were used usually produced decent results and decreased the
problem size even further. However, the overall classification accuracy
decreases with fewer codewords.

Fig. 4 shows a sample segment of a VFDT and its corresponding
SOFM codebook. The codebook contains the codewords most repre-
sentative of the signal and it should also be noted that the classification
problem size is reduced during the transition from the VFDT segment
to the SOFM codebook in that the number of features used to represent
the signal segment is reduced. The generation of all the codebooks for
the entire training and testing sets, whether it be for a single recording
signal or a multiple recording signal, requires no more than a third
of a second when implemented in Java and run on a 1-GHz AMD
Athlon computer. In the configurations of the system involving the
SOFM component, it is these codebooks and their codewords that are
provided as inputs into the neural networks rather than the VFDT as is
done when the SOFM module is not used.

B. CNN Experiment

The results of the classification of the input vectors in the testing set
using the CNN are shown in the confusion matrix in Table I. Overall,
the classification system performed well at a correct classification rate
of nearly 87%.

The size of each class in the training and testing sets was proportional
to their frequency of occurrence in the signals. While the first class had
the smallest representation, it was so distinct that all but one of input

TABLE I
CNN EXPERIMENT CONFUSION MATRIX
Exp d Experimental cla:s‘};ir::ttion
1 2 3 4 rate (%)
1 23 | 0 0 1 95.83
2 3 [127] 8 8 86.99
3 0 11 | 151 | 26 80.32
4 0 13 | 3 | 170 91.40

Average Correct Classification Rate: 86.58%; 95%
Confidence Interval: [83.72%, 89.44%).

TABLE 11
CNN WITH SOFM EXPERIMENT CONFUSION MATRIX
Experimental Correct
Exp d classification
1 2 3 4 rate (%)
1 24 0 0 0 95.83
2 2 [129 | 10 5 88.36
3 0 13 | 150 | 25 79.79
4 0 16 | 10 | 160 86.02

Average Correct Classification Rate: 85.11%; 95%
Confidence Interval: [82.12%, 88.10%).

vectors of this class was correctly classified. Input vectors from the
remaining classes were also classified at a high rate, giving confidence
to the abilities of the system. As the development of the testing set
involved randomness in selecting the input vectors to use for testing,
the 95% confidence interval for the classification rate is provided under
the confusion matrix in order to bound the true classification rate of
the system. The confidence interval was computed by considering each
classification of the input vectors in the testing set to be a Bernoulli
trial.

The above experiment was repeated using SOFMs to perform feature
extraction upon the VFDT prior to classification with the CNN. As the
confusion matrix in Table II indicates, in general, the classification re-
sults when using the SOFMs were slightly lower than when the SOFMs
were excluded, but they are essentially equal when confidence inter-
vals are taken into account. Making use of the SOFMs did, however,
reduce the number of inputs into the CNN from 16 in experiment one
to 12 in experiment two, which caused a reduction in the training and
execution times of the system. Hence, the SOFM stage did not improve
the overall classification accuracy of the system, but it did reduce the
classification problem size, which expedites the classification process.
Thus, the classification rates remained almost the same despite the fact
that fewer features were used for classification.

C. Additional Experiments

Additional experiments were performed using a PNN as the classifier
and the results are shown in Table III. For the first experiment, the
z axis fractal dimensions were used for classification by the PNN. As
the table shows, when using just the z axis fractal dimensions, the PNN
based system was only able to attain an average classification rate of
67%. Despite this overall poor performance, the system did function
quite well with respect to the first two classes. However, the network
was simply not able to differentiate between the last two classes with
much success in this first experiment.

The second experiment was identical to the first, except that the
z axis signals were used. As shown in Table III, this second configu-
ration of the PNN-based classification system was not very effective
in differentiating between the first three classes. However, this config-
uration of the system was quite successful in classifying inputs of the
fourth class. It should be noted that when classification was performed

202 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 2, MARCH 2006

TABLE III
PNN EXPERIMENTS
signal Classification rate (%) clag‘;?fzﬁgﬁon
1 2 3 4 rate (%)
X 100 | 92 59 50 67
z 63 29 47 91 58
X&Z | 100 95 84 95 91

TABLE IV
PNN WiTH SOFM EXPERIMENTS
signal | Classification rate (%) cIaAs‘;?friigzon
1 2 3 4 rate (%)
X 100 90 70 39 66
z 63 16 68 90 61
X&Z | 96 91 86 86 88

upon the x axis information, as was done in the first experiment us-
ing the PNN, the system was able to classify inputs from the first two
classes, but failed to perform well on the class 4 inputs. Hence, the
information contained in the and z axes is somewhat complementary
in that the information in the x axis signal can be used to identify in-
puts from classes 1 and 2 and the z axis signals can be used to identify
signals of class 4. Another observation from these two experiments is
that the results from the first experiment were superior to those attained
through the second experiment, which seems to indicate that the x axis
of the fish trajectory signals contains more important information than
the z axis.

After observing the results of the first two experiments involving the
PNN, the goal of the third experiment was to determine the accuracy
of the PNN-based system when presented with both the x and z axes.
Hence, in this experiment, the PNN uses the exact same inputs as were
utilized in the CNN experiments. As the final row of Table III indicates,
the system used for this third experiment performed at a consistently
high rate for all of the different classes. The individual classification
rates for each class were all above 90% except for class three. When
the x and 7 axes were used independently for classification, as was the
case for experiments one and two, class three consistently had a fairly
low classification rate. Thus, it is not all that surprising that when the
PNN-based classification system uses information from both z and z
axis that it still has difficulties with class three.

While the results for this last experiment gave slightly higher clas-
sification rates than those with the CNN, they are comparable when
confidence intervals are taken into account. However, there were some
differences in the training and execution times. The PNN trained two
orders of magnitude faster than the CNN, while the trained CNN per-
formed classification nearly an order of magnitude faster than the PNN.

Similar to what was done with the CNN experiments, the PNN
experiments were repeated using SOFMs to perform feature extraction
upon the VFDT prior to classification. Table IV shows that the addition
of the SOFMs results in very similar effects as were seen when the
SOFMs were incorporated with the CNN-based systems. Namely, the
PNN with SOFM system yielded classification rates almost as high as
those when the SOFMs were not used, while requiring less training
and execution time.

Further details of these additional experiments can be found in [2].

IV. DiscusSION

The experiments performed upon the various configurations of the
system using the fish trajectory signals provided some valuable in-
sight into the abilities of the different systems. First, configurations us-

ing and the corresponding systems not incorporating SOFMs obtained
average classification rates that were approximately equal. Essentially,
the SOFMs were successful in removing the redundant information
content contained within the signals so that fewer features were used
in the classification process while still maintaining high classification
rates. Because the SOFMs reduced the size of the classification prob-
lem, the systems that made use of the SOFMs were faster than the
equivalent systems that did not use the SOFMs.

A second general observation that can be made from these exper-
iments is that the classification systems that made use of only the x
axis information outperformed those systems which only used the z
axis information. This indicates that the z axis contains more impor-
tant information than the z axis. Configurations that made use of both
axes simultaneously, however, substantially outperformed the systems
that only utilized one axis. When a classification system only makes
use of one of the x-or z axis, it is effectively taking only part of the
information content of the signal into account. The systems making use
of both the axes used all the information in the signals when making
classification decisions, which provided higher classification rates. In
improving the classification rate above configurations utilizing only a
single axis, the neural networks when presented with both axes demon-
strated that they were also able to differentiate between which axis
information was important when making each individual classification
decision. More specifically, the x axis seemed to contain the most im-
portant information regarding classes one and two while the z axis
seemed to provide the most information regarding class four. Both the
CNN and PNN were able to use the complementary information from
each of the signals in order to achieve greater classification accuracy.

A third observation is related to the training and execution times
of the two neural networks used to perform classification based on
the selected features. It was stated in Section II-D that PNNs train
orders of magnitude faster than most other neural networks and this
fact is corroborated by the results of the experiments performed. When
comparing the training time of the experiment from Table III on both
the x and z axes to that of Table I, the PNN trained more than 50 times
faster than the CNN. In comparing the experiments in Tables Il and IV,
the CNN was approximately 100 times slower than the PNN. In terms
of execution time, PNNs were stated to have slower execution times
than other neural networks, and again, the experiments confirmed this
fact. In the experiments performed in this paper, once trained properly,
the CNNs were able to classify input vectors more than 8 times faster
than the PNNs.

V. CONCLUSION

This work was done to demonstrate the feasibility of classification
of self-affine signals by using variance fractal dimensions and CNN,
without any prior knowledge of the number of classes in the signal.
This paper has shown that a multifractal characterization of self-affine
signals through variance fractal dimensions is an effective means of
feature extraction as it provided a sufficient metric upon which to
classity the signals used in this paper. Furthermore, the use of CNNs
upon two separate, yet strongly correlated signals were used and shown
to be effective in classifying these signals based on its variance fractal
dimensions.

Although the classification system created for this paper was shown
to perform quite successfully in classifying the nonstationary, self-
similar, stochastic, multivariate dishabituation signal, there are a num-
ber of extensions that would prove to be valuable in analyzing other
signals. First, the classification system could be modified to incorporate
hypercomplex input signals involving n-dimensional signals, as there
are many examples of multivariate signals composed of more than two

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 2, MARCH 2006 203

significant and correlated components. Second, the fractal dimension
trajectory can be generalized to represent both the spatial and temporal
multifractal characteristic of a signal through the Renyi fractal dimen-
sion spectrum trajectory [13]. This representation would be valuable
for classification, as some signals are not monofractal in a window,
rather they are multifractal in both space and time.

REFERENCES

[1] W.Kinsner, “Batch and real-time computation of a fractal dimension based
on variance of a time series,” Univ. Manitoba, Winnipeg, MB, Canada,
Tech. Rep. DEL94-6, Jun. 1994.

[2] V. Cheung and K. Cannons “Signal classification through multifractal
analysis and neural networks,” B.S. thesis, Dept. Elect. Comput. Eng.,
Univ. Manitoba, Winnipeg, MB, Canada, 2003.

[3] B. Mandelbrot, The Fractal Geometry of Nature.
Freeman, 1982.

[4] H. O. Peitgen, H. Jiirgens, and D. Saupe, Chaos and Fractals: New Fron-
tiers of Science. New York: Springer-Verlag, 1992.

[5] T. Masters, Signal and Image Processing with Neural Networks: A C++
Sourcebook. New York: Wiley, 1994.

[6] B. L. Kalman and S. C. Kwasny, “Why tanh? Choosing a sigmoidal
function,” in Proc. Int. Joint Conf. Neural Networks, vol. 4, Jun. 1992,
pp- 578-581.

[7] D. F. Specht, “Probabilistic neural networks for classification, mapping,
or associative memory,” in Proc. IEEE Int. Conf. Neural Networks, vol. 1,
Jul. 1988, pp. 525-532.

[8] E. Parzen, “On estimation of a probability density function and mode,”
Ann. Math. Statist., vol. 33, no. 3, pp. 1065-1076, 1962.

[9] P. Wasserman, Advanced Methods in Neural Computing.
Van Nostrand, 1993.

[10] T. Masters, Advanced Algorithms for Neural Networks: A C++ Source-
book. New York: Wiley, 1995.

[11] T. Kohonen, Self-Organization and Associative Memory.
Germany: Springer-Verlag, 1984, pp. 255-9.

[12] R.Eberhart and R. Dobbins, Neural Network PC Tools: A Practical Guide.
San Diego, CA: Academic, 1990.

[13] W.Kinsner, “Fractal and chaos engineering,” Dept. Elect. Comput. Eng.,
Univ. Manitoba, Winnipeg, MB, Canada, Lecture Notes, 2004, p. 941.

San Francisco, CA:

New York:

Berlin,

Cognitive Informatics Models of the Brain

Yingxu Wang, Senior Member, IEEE, and Ying Wang

Abstract—The human brain is the most complicated organ in the uni-
verse and a new frontier yet to be explored by an interdisciplinary ap-
proach. This paper attempts to develop logical and cognitive models of the
brain by using cognitive informatics and formal methodologies. This paper
adopts a memory-based approach to explore the brain and to demonstrate
that memory is the foundation for any kind of natural or artificial intelli-
gence. Logical structures of memories are explored, and cognitive models
of the brain are proposed. Cognitive mechanisms of the brain, including
hypotheses and theories on the thinking engine of the brain, long-term
memory establishment, and roles of perceptive eye movement, and sleep
in long-term memory development, are investigated. The models and theo-
ries can be applied to explain a wide range of fundamental phenomena in
psychology, cognitive science, physiology, computing, and neural science.

Index Terms—Cognitive informatics, cognitive models, memory, object-
attribute-relation (OAR) model, the brain, thinking engine.

I. INTRODUCTION

The history of human quest to understand the brain is certainly as
long as the human history itself. The study of the brain was originally
conducted in the domain of philosophy. Plato (428-347 B.C.) observed
that the philosophy begins in human wonder, a powerful desire to under-
stand the world, not merely to act in it as animals do. Aristotle (394-322
B.C.) perceived psychology as the study of the soul which differentiates
the animate world from the inanimate one. Psychology, as we know it,
began with Rene Descartes (1596—1650), who proposed that the brain
functions like a machine, in 1649. Descartes also created a framework
for thinking about mind and body for philosophers and psychologists.
Then, 200 years later, Wilhelm Wundt (1832-1920) founded psychol-
ogy as a science disciplinary by initiating a link between physiology
and philosophy via an experimental approach in 1873 [12].

Itisrecognized that in computing, software engineering, informatics,
and artificial intelligence, almost all hard problems that are yet to be
solved, share a common root in the understanding of the mechanisms
of the natural intelligence and the cognitive processes of the brain.
This leads to an emerging discipline of research known as cognitive
informatics [4], [11].

This paper develops the cognitive informatics models of the brain.
A main thread adopted in this paper is the memory-based approach
that perceives memory as the foundation for any natural and artificial
intelligence. Another major thread of this work is the relationship
between the inherited and the acquired life functions. Structures of
memories are explored in Section II. Cognitive models of the natural
intelligence are developed in Section III. Cognitive mechanisms of the
brain, including the hypotheses on long-term memory establishment,
roles of sleeping in memory, and the cognitive mechanisms of eyes
as the perceptual browser of the mind, are investigated in Section I'V.
On the basis of these analyses, a number of functional and cognitive
mechanisms and processes of the brain will be revealed.

Manuscript received January 6, 2004; revised September 8, 2004. This work
was supported in part by the Natural Sciences and Engineering Research Council
of Canada. This paper was recommended by Guest Editor W. Kinsner.

Yingxu Wang is with the Theoretical and Empirical Software Engineering
Research Center, University of Calgary, Calgary, AB T2N 1N4, Canada (e-mail:
Yingxu@ucalgary.ca).

Ying Wang is with the Fourth City Hospital, Shaanxi 710004, China.

Digital Object Identifier 10.1109/TSMCC.2006.871151

1094-6977/$20.00 © 2006 IEEE

