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Abstract 

 
This paper describes a system capable of classifying 

stochastic, self-affine, nonstationary signals produced by 
nonlinear systems.  The classification and analysis of 
these signals is important because they are generated by 
many real-world processes.  The first stage of the signal 
classification process entails the transformation of the 
signal into the multifractal dimension domain, through 
the computation of the variance fractal dimension 
trajectory (VFDT).  Features can then be extracted from 
the VFDT using a Kohonen self-organizing feature map.  
The second stage involves the use of a complex domain 
neural network and a probabilistic neural network to 
determine the class of a signal based on these extracted 
features.  The results of this paper show that these 
techniques can be successful in creating a classification 
system which can obtain correct classification rates of 
about 87% when performing classification of such signals 
without knowing the number of classes. 
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1. Introduction 
 

This paper investigates the development of a software 
system that is capable of classifying stochastic, self-affine, 
nonstationary signals that originate from nonlinear 
systems.  Such signals are often multivariate, and the 
system described in this paper has the ability to take these 
multivariate signals into account during the classification 
process. 

The features used for classification are based on a 
temporal multifractal characterization of the signal, 

which is achieved through the computation of its variance 
fractal dimension trajectory (VFDT) [Kins94].  This 
translation into the temporal multifractal dimension 
domain emphasizes the underlying complexity of the 
signal, and more importantly for classification, has a 
normalizing effect.  The classification based on these 
features is performed by a complex domain neural 
network that can operate upon signal features from 
separate, but strongly correlated signals, without losing 
the correlation between the signals.  Furthermore, 
complex domain neural networks often generalize more 
effectively and train faster than their real-valued 
counterparts. 

While the classification system implemented for this 
paper is not specific to any particular signal, spatio-
temporal recordings of a Siamese fighting fish when 
presented with various stimuli during dishabituation 
experiments were used to evaluate the performance of the 
system.  A stereoscopic camera system was used to track 
and record the three dimensional Cartesian co-ordinates 
of the fish over an eight hour period.  A sampling rate of 
10 Hz was used for these recordings, which is valid 
according to the Nyquist sampling theorem and the 
known physical limits of the fish [ChCa03].  Each sample 
in the signal was recorded with an accuracy of two 
decimal places.  Finally, the recording device performed 
no filtering of the signal and thus, did not alter its 
bandwidth. 

A sample of this dishabituation signal is shown in Fig. 
1.  Stimuli applied during these experiments were on the 
Y-Z plane at X = 0 mm and on the X-Y plane at 
approximately Z = 225 mm.  Since there were no stimuli 
along the Y-axis and it was the least accurate because it 
was resolved indirectly through the stereoscopic vision, 
the Y-component of the signal was not used for 
classification in this paper [ChCa03].  An added difficulty 
in analyzing these signals was that they contained an 



 

unknown number of classes, but this was overcome using 
clustering algorithms. 

An overview of the desired behavioural analysis and 
the techniques used in this paper for classification of the 
behavioural classes is provided in Sec. 2.  Details of the 
experiments performed with the dishabituation signals 
and the classification system are presented in Sec. 3. 

 
2. Background 

 
2.1 Animal Behavioural Analysis 
 

Experimental analysis is an effective means of 
discovering laws that govern the interaction between 
animal behaviour and its environment.  Because 
behaviour is a continuous phenomenon, this effort 
requires that we subdivide or classify behaviour in some 
way. 

One way to form response classes is to create 
contingencies that are satisfied by a variety of response 
topographies, and to study selected properties of any 
behaviour that satisfies those contingencies.  For example, 
a rat in an experimental chamber may be trained to 
depress a lever, and the frequency of this behaviour will 
be a function of which lever presses, if any, produce 

access to food.  This approach of defining functional 
response classes has helped to produce powerful and 
general learning principles, but the effects of the 
experimental contingencies on other properties of the 
behaviour often go unstudied.  That is, the rat can do 
many different things that will lower the lever, and may 
be engaged in a variety of activities between lever presses. 

The computer-aided video tracking system described 
here measures behaviour in a way that captures its 
continuity and diverse topographies, but the problem of 
classification remains:  how do we efficiently extract 
interesting and relevant portions of behaviour and relate 
these behaviours to environmental events?  The system 
can easily generate so much data that it becomes very 
difficult to try to identify recurring patterns through 
visual inspection.  The techniques described in this paper 
are an important step towards the automated 
identification and analysis of topographical response 
classes.  Combining this data with analysis of functional 
response classes is certain to help produce a more 
complete science of animal behaviour. 
 
2.2 Variance Fractal Dimension Trajectory 

 
The feature extraction technique used in this paper 

for classification is a transformation into the temporal 
multifractal dimension domain by computing a variance 
fractal dimension trajectory [Kins94].  An advantage of 
using the variance fractal dimension trajectory (VFDT) 
for classification is that it emphasizes the underlying 
complexity of the signal, thus helping to provide the 
unique identification for each class.  Another advantage is 
that the transformation provides a normalizing effect 
because the theoretical range of fractional dimensionality 
of Euclidean one-dimensional signal is between 1 and 2.  
A final important advantage of the VFDT is that it can be 
computed in real-time, which significantly broadens its 
possible applications. 

Before proceeding with a more detailed description of 
the VFDT, the concepts of fractals and fractal dimensions 
will first be explained.  The fish trajectory signals which 
are being examined in this paper are, among other things, 
self-affine in nature.  Self-affinity means that regardless 
of the magnification used when viewing an object, the 
object’s statistical properties, structure, and complexity 
remain constant [Mand82].  Fractals, in the simplest 
sense, are self-affine entities.  As a result, fractal analysis 
techniques serve as an appropriate means for processing 
the signals in this paper. 

An important characteristic of a fractal is its fractal 
dimension.  The most familiar dimensions are the 
standard Euclidean dimensions, which are discrete, 
integral numbers.  For instance, a line is considered to be 

 
Fig. 1.  Fish trajectory signal along 
the X (a), Y (b), and Z(c) directions. 
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a one dimensional object, a square a two dimensional 
object, and a cube a three dimensional object.  However, it 
is also possible for objects to exhibit fractional 
dimensions.  In fact, the term fractals was coined to 
describe objects that have a dimension that is non-
integral.  The Koch curve, for example, is a fractal curve 
with a dimension of approximately 1.2619 [PeJS92], 
meaning that it has a greater complexity than a straight 
line, but is not quite as complex as a two dimensional 
object. 

The significance of the dimensionality of an object is 
that it provides valuable information regarding the 
object’s complexity, which in this context, refers to the 
singularities in the object.  There are an infinite number 
of fractal dimensions, such as the topological dimension, 
box-counting dimension, self-similar dimension, and 
information dimension.  In certain instances, the different 
measures of dimensionality yield the same result for the 
same object.  However, at other times, the computation of 
the various dimensions provides different numerical 
values, which leads to the notion of multifractals.  For the 
purposes of this paper, only one form of fractal 
dimension, the variance fractal dimension [Kins94], is 
utilized to perform feature extraction. 

The variance fractal dimension is based on 
calculations involving the variance of the amplitude 
increments of a signal taken at different scales.  The 
amplitude increments of a signal over a time interval ∆t 
adhere to the following power law relationship 
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where x(t) represents the signal and H is the Hurst 
exponent.  The Hurst exponent can be calculated via a 
log-log plot using 
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The variance fractal dimension, D� , is then given by 
 

 1D E Hσ = + −  (3) 
 

where E is the Euclidean dimension.  The Euclidean 
dimension is equal to the number of independent 
variables in the signal.  Thus, since this paper 
concentrates solely upon Euclidean one-dimensional 
signals, E can be set to 1.  Equation 3 then reduces to: 

 2D Hσ = −  (4) 

The process of calculating the VFDT of a signal 
essentially involves segmenting the entire signal into 
numerous sub-signals, or windows, and calculating the 
variance fractal dimension for each of these windows.  
The choice of the window size is a very important aspect 
of the process and is specific to the type of signal under 

analysis.  Generally, the window size is chosen to match 
the stationarity of the signal being studied.  A second 
important parameter of the VFDT is the window 
displacement, which is the number of samples that the 
window is shifted for each calculation of the variance 
fractal dimension.  If the window displacement is selected 
such that it is smaller than the window size, then the 
windows used in calculating the VFDT will overlap.  It is 
not necessary that the windows overlap; however, using 
overlapping windows amplifies the details of the VFDT 
because the same points in the original signal are 
involved in multiple windows while computing the 
VFDT.  However, the displacement should not be given 
an extremely small value since this would result in 
significant windowing artifacts because of the excessive 
correlation between windows.  Of the two parameters, the 
determination of the window displacement is more 
subjective in nature and usually determined 
experimentally. 

This sliding window computation is significant in 
that it reveals the changes in the variance fractal 
dimension of the signal over time, which is shown in this 
paper to provide valuable information for classification 
purposes.  Such a signal that produces a non-constant 
VFDT is a temporal multifractal signal.  Conversely, 
should the VFDT be computed from a simple fractal 
signal, then the resulting VFDT will simply be constant. 

The representation of a signal by its VFDT facilitates 
classification by the complex domain neural network.  
The VFDT provides a usable set of features upon which 
classification can be performed because of the 
dimensionality reduction, underlying feature 
exemplification, and normalization that occurred as a 
result of the transformation into the multifractal domain. 

 
2.3 Complex Domain Neural Network 

 
Complex domain three-layer feedforward neural 

networks (CNN) are used in this paper to perform 
classification based upon the variance fractal dimensions. 

Neural networks that work with real-valued inputs 
are sufficient for most situations, but when the inputs to 
the neural network are naturally represented as complex 
numbers, it is advantageous to use a neural network that 
takes this representation into account.  The fish trajectory 
signal examined in this paper is a multi-valued signal 
where each sample consists of three values, one for each 
of the Cartesian co-ordinate axes.  For this particular 
signal, the majority of the significant information lies 
along two of the axes.  Correspondingly, the signal can be 
viewed as a complex valued signal whereby samples from 
the X-axis are used as the real part of the samples in the 
complex valued signal and samples from the Z-axis are 



 

used as the imaginary part.  The reason for this 
representation is that it emphasizes that the trajectory 
along each of the axes are not independent; rather, they 
are strongly correlated. 

Complex valued data can be provided to a real 
domain neural network by separating the components of 
the complex values and providing them separately as 
inputs; however, any correlation between the components 
is lost.  While in theory, real valued neural networks have 
the same ability as complex domain neural networks, in 
practice, the training of complex domain neural networks 
is typically faster and they often generalize better, 
especially when only a sparse training set is available. 

The architecture of complex domain three-layer 
feedforward neural networks is similar to their real 
domain counterparts; the main differences are that each 
input value and weight is a complex number consisting of 
both a real and imaginary part.  The activation function 
used in this paper for the neurons is a scaled version of 
the hyperbolic tangent function, tanh(1.5x) [KaKw92], 
which is applied to the magnitude of the complex valued 
input and then multiplied by the unit vector of the input 
so that the output of the activation function maintains the 
same direction as the input [Mast94]. 

This paper uses a single output neuron for each class 
in order to perform classification.  Since the output 
neurons result in binary decisions for the inclusion or 
exclusion of an input to a particular class, it is inefficient 
to employ complex-valued outputs as it does not aid in 
making the classification decision.  Thus, for 
classification purposes, the imaginary part of the output of 
these neurons is discarded and the decisions are based 
solely upon the real part of the output.  The network is 
trained to have the output neuron corresponding to the 
input vector’s class produce a value of 0.9 and with the 
rest of the output neurons producing -0.9.  The 
classification decision for a given input is then based 
upon which output neuron produces the highest 
activation. 

The network is restricted to a single hidden layer in 
this paper since additional layers would increase the 
complexity of the network as well as the training time 
substantially, while not adding to the network’s ability to 
classify or generalize significantly because a three-layer 
neural network is sufficient in nearly all situations.  The 
number of neurons to place in this layer has a dramatic 
effect on the network’s ability to perform the desired 
operation and the speed at which it executes and trains.  
The heuristic which specifies that the number of hidden 
neurons should be set to the geometric mean of the 
number of input and output neurons is used in this paper. 
 

Through experimentation, it was discovered that this 
heuristic provides a good balance in that there are enough 
neurons to learn the desired function without simply 
memorizing the inputs and the network is restrained to a 
reasonable size so that the training and execution time of 
the network is acceptable. 

The training of the network is performed using the 
standard backpropagation algorithm extended to operate 
with complex values.  The partial derivates of the error of 
the output with respect to the real and imaginary parts of 
the weights is used as the error gradient to indicate the 
direction with which to modify the weights.  The 
modifications to the weights in each epoch is given by 
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where �  is the output error, w is the weight in the 
network, the real and imag subscripts indicate the real 
and imaginary parts of the weights, and �  is the learning 
rate.  The full derivation of the error gradients shown in 
(4a) and (4b) can be found in [Mast94]. 
 
2.4 Probabilistic Neural Network 

 
An alternative to the complex domain neural network 

for classification is the probabilistic neural network.  The 
probabilistic neural network (PNN) is an implementation 
of the Bayes optimal decision rule in the form of a neural 
network [Spec88].  PNNs have a number of advantages 
over traditional neural networks in that they tend to train 
orders of magnitude faster and their classification 
accuracy asymptotically approaches Bayes optimal.  
However, PNNs require a comparatively large amount of 
memory and more time to execute. 
 
2.5 Kohonen Self-Organizing Feature Map 

 
Kohonen self-organizing feature maps (SOFMs) 

[Koho84] can be used as a clustering algorithm to 
determine the classes of signals.  SOFMs can also be used 
to perform feature extraction upon the VFDT prior to 
classification.  SOFMs are neural networks that employ 
unsupervised competitive learning algorithms.  These 
neural networks are referred to as topology-preserving in 
that the neighbourhood relations of the data are preserved 
and structure is imposed upon the neurons in the network.  
This clustering of the data based on their relations allows 
for the discovery of the underlying structure of the data. 
 



 

3. Experimental Work 
 

3.1 Computational Setup 
 
The dishabituation signals were segmented into 

lengths of 4096 samples, the longest period of constant 
behaviour of the fish, and the classes of each of the 
segments were determined through clustering of the X 
and Z-axis segments in the time domain with a Kohonen 
self-organizing feature map [ChCa03].  To train the 
classification system, a training set of 612 segments, each 
consisting of 4096 samples, from 9 recordings was used.  
The testing set applied to the system was made up of 544 
segments from 8 recordings that were not used for the 
training set. 

No filtering was performed upon the signals prior to 
the computation of the VFDTs used to construct the 
training and testing sets.  The VFDTs were computed 
using a window size of 2048 samples, the largest window 
in which the fractal dimension of the signals remained 
constant.  This length of 2048 samples, or about 3.4 
minutes, as determined by the signal’s monofractality can 
be considered as a weak-stationarity measure.  A window 
displacement of 256 samples was used as it was 
discovered to give a good resolution of the VFDT while 
yielding a substantial dimensionality reduction. 

Figure 2b shows the VFDT of the signal of Fig. 2a.  
The first thing to note about the VFDT plot is that the 
fractal dimensions of the signal changes, indicating that it 
is multifractal in time.  It can further be noted that the 
samples of the VFDT are normalized dimensions between 
1 and 2, which is essential for the classification process.  
Additionally, the VFDT plots visually seem to correspond 
to the time domain plots in that they tend to emphasize 
some of the characteristics in the original signal; the most 

exemplary characteristic being the initial large changes in 
the VFDT signals which correspond to the irregular 
motion of the fish as seen in the time domain plot. 

 
3.2 CNN Experiment 

 
The results of the classification of the input vectors in 

the testing set using the complex domain neural network 
are shown in the confusion matrix in Table 1.  Overall, 
the classification system performed well at a correct 
classification rate of nearly 87%. 

The size of each class in the training and testing sets 
were proportional to their frequency of occurrence in the 
signals.  While the first class had the smallest 
representation, it was so distinct that all but one of input 
vectors of this class were correctly classified.  Input 
vectors from the remaining classes were also classified at 
a high rate, giving confidence to the abilities of the 
system.  As the development of the testing set involved 
randomness in selecting the input vectors to use for 
testing, the 95% confidence interval for the classification 
rate is provided under the confusion matrix in order to 
bound the true classification rate of the system.  The 
confidence interval was computed by considering each 
classification of the input vectors in the testing set to be a 
Bernoulli trial. 
 
3.3 Additional Experiments 
 

Additional experiments were performed using a PNN 
as the classifier and the results are shown in Table 2.  For 
the first experiment, the X-axis fractal dimensions were 
used for classification by the PNN.  The second 
experiment was identical to the first, except that the Z-
axis signals were used.  In both experiments, the results 
were quite poor.  However, by utilizing both the X and Z-
axis fractal dimensions for classification, a significantly 
higher classification rate was achieved. 

 
Fig. 2.  Fish trajectory signal (a) and its VFDT (b). 

Table 1.  CNN experiment confusion matrix. 

Experimental  

1 2 3 4 

Correct 
Classification 

Rate (%) 

1 23 0 0 1 95.83 

2 3 127 8 8 86.99 

3 0 11 151 26 80.32 
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4 0 13 3 170 91.40 

Average Correct Classification Rate:  86.58% 

95% Confidence Interval:  [83.72%, 89.44%] 
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While the results for this last experiment gave 
slightly higher classification rates than those with the 
CNN, they are comparable when confidence intervals are 
taken into account.  However, there were some differences 
in the training and execution times.  The PNN trained 
two orders of magnitude faster than the CNN, while the 
trained CNN performed classification nearly an order of 
magnitude faster than the PNN. 

These experiments were also repeated using SOFMs 
to perform feature extraction upon the VFDT prior to 
classification.  For most cases, the classification results 
when using the SOFMs were slightly lower than when the 
SOFMs were excluded, but they are essentially equal 
when confidence intervals are taken into account.  Thus, 
the classification rates remained almost the same despite 
the fact that fewer features were used for classification. 

Further details of these additional experiments can be 
found in [ChCa03]. 
 
4. Conclusions 
 

This work was done to demonstrate the feasibility of 
classification of self-affine signals by using variance 
fractal dimensions and complex domain neural networks.  
This paper has shown that a multifractal characterization 
of self-affine signals through variance fractal dimensions 
is an effective means of feature extraction as it provided a 
sufficient metric upon which to classify the signals used 
in this paper.  Furthermore, the use of complex domain 
neural networks upon two separate, yet strongly 
correlated signals were used and shown to be effective in 
classifying these signals based on its variance fractal 
dimensions. 

Although the classification system created for this 
paper was shown to perform quite successfully in 
classifying the non-stationary, self-similar, stochastic, 
multivariate dishabituation signal, there are a number of 
extensions that would prove to be valuable in analyzing 
other signals.  First, the classification system could be 
modified to incorporate hypercomplex input signals 
involving n-dimensional signals, as there are many 
examples of multivariate signals composed of more than 
two significant and correlated components.  Second, the 
fractal dimension trajectory can be generalized to 

represent both the spatial and temporal multifractal 
characteristic of a signal through the Rényi fractal 
dimensions spectrum trajectory.  This representation 
would be valuable for classification, as some signals are 
not be monofractal in a window, rather they are 
multifractal in both space and time. 
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Table 2.  PNN experiments. 
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X 100 92 59 50 67 
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X & Z 100 95 84 95 91 

 


