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ABSTRACT 

 This thesis proposes a method of classifying stochastic, non-stationary, self-similar 

signals which originate from non-linear systems and may be comprised of multiple signals, using 

a multifractal analysis and neural networks. 

 The first stage of the signal classification process entails the extraction of the most 

important features of the signal.  To perform this feature extraction, the signal is first transformed 

into the fractal dimension domain by calculating its variance fractal dimension trajectory 

(VFDT).  This transformation emphasizes the underlying multifractal characteristics of the signal, 

and more importantly for classification, it produces a normalized signal.  The resulting VFDT can 

be used directly for classification.  Alternatively, the most important features of the VFDT can be 

obtained through the use of Kohonen self-organizing feature maps (SOFMs) and the classification 

can then be based upon these features.  Configurations with and without the SOFMs are examined 

in this thesis. 

 The second stage of the classification process involves the use of neural networks to 

determine the particular class of a signal based on its extracted features.  This thesis employs 

several advanced neural networks, including probabilistic neural networks (PNNs) and complex 

domain neural networks (CNNs).  While the use of PNN has been sparse in previous research, it 

has significant advantages over traditional neural networks, including faster training times and 

classification accuracies that are asymptotically Bayes optimal.  Similarly, CNNs have not been 

used extensively, but research in the area has shown that they often generalize more effectively 

than real domain networks.  Additionally, these networks are able to take advantage of the strong 

correlation between multiple signals that constitute an entire signal. 

 The classification system implemented in this thesis is verified using spatio-temporal 

recordings of a Siamese fighting fish when presented with various stimuli during dishabituation 

experiments in a fish tank.  The experiments performed in this thesis show that the proposed 

classification systems are capable of classifying non-stationary, self-similar signals, such as the 

fish trajectory signal, with accuracies up to 90%.  Additionally, the experiments verified that the 

use of multiple signal components of the fish trajectory signal yield better results than when only 

a single component is used.
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CHAPTER 1 

INTRODUCTION 

1.1 Purpose 

 The goal of this thesis is to develop a software system that is capable of classifying 

stochastic, self-similar, non-stationary signals which originate from non-linear systems.  

Complicated signals such as these are often composed of multiple signals, and the system for this 

thesis will have the ability to take these multiple signals into account during the classification 

process. 

 This thesis is unique because of the particular techniques that that are chosen to perform 

the classification.  Specifically, a rarely used transformation is used to represent a signal by its 

variance fractal dimensions.  This translation emphasizes the underlying multifractal 

characteristics of the signal, and more importantly for classification, it has a normalizing effect.  

Once the most significant features are extracted through the multifractal analysis, two advanced 

neural networks are explored to perform the actual classification.  One of the neural networks 

utilized in this thesis is the probabilistic neural network.  While the use of this network has been 

sparse in previous research, it has significant advantages over traditional multilayer feedforward 

neural networks including faster training times and classification accuracies that are 

asymptotically Bayes optimal.  The second neural network used for classification is the complex 

domain neural network.  This network has yet to be used extensively in research or practice, but it 

is often able to generalize more effectively than real domain neural networks and is able to take 

full advantage of the multiple signals that constitute an overall signal. 

1.2 Problem 

 Signal classification is the analysis of a signal whereby the signal is determined to belong 

to a particular class based on certain characteristic features.  The membership to a particular class 

usually signifies something about the physical process or system from whence the signal 

originated.  The classification and analysis of stochastic, non-stationary, self-similar signals 

produced by non-linear systems is important because many real world processes have been shown 

to generate signals of this type.  The nature of these signals makes them very challenging to 
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analyze because traditional techniques, such as the Fourier transform, which often depend on the 

stationarity of a signal and the linearity of the analyzed system, cannot be applied.  In addition to 

belonging to the class of stochastic, self-similar signals, non-stationary signals, many signals that 

are produced in the real world consist of multiple signals that are required to completely define 

the overall signal.  For example, multichannel audio signals and multiple lead 

electroencephalograms and electrocardiograms all consist of many signals, all of which are 

required to provide a complete description of the physical process from which they were created. 

 Since traditional techniques cannot effectively be applied to these types of complex 

signals, more advanced methods are sought.  The first task that is usually undertaken in an 

attempt to classify these complex signals is to extract the most important characteristics, or 

features from the signal.  In general, the fewest number of features that are capable of 

representing the different classes of signals are desired.  Once the most important features have 

been extracted from the signal, they are used to determine the class membership of the signal.  

The function that maps these input features to an output class is often unknown and very 

complex.  As a result, sophisticated classification methods are required to determine to what class 

the signal belongs based on its given features. 

1.3 Scope 

 This paper will limit the feature extraction to utilizing a multifractal characterization 

through the computation of the variance fractal dimension trajectory in addition to Kohonen self-

organizing feature maps.  The classifiers used to perform the classification based on these 

features are restricted to probabilistic and complex domain neural networks.  The differing 

degrees of success of the various configurations of the system will be measured through the use 

of fish trajectory signals in which only two components of the signal are considered. 

1.4 Thesis Organization 

 This paper is divided into seven distinct chapters.  Chapter 1 provides a general 

introduction to the thesis and outlines its motivation and objectives.  Chapter 2 gives background 

information on the different techniques that are used in the thesis.  The third and fourth chapters 

describe the design and implementation of the classification system.  The fifth chapter details the 

testing and verification methods used to ensure that the software components operate as expected.  
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Chapter 6 explains the experiments performed to gauge the performance of the classification 

system and thoroughly discuss their results and implications.  Chapter 7 concludes the thesis and 

suggests future work that can extend the work done in this thesis to improve the performance of 

the system.  Appendices A and B provide a description of the fish trajectory signals used to verify 

the classification system and the clustering technique used to derive the training and testing sets 

for classification.  The source code and documentation for the classification system are contained 

in Appendix C. 
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CHAPTER 2 

BACKGROUND 

2.1 Signal Classification and Terminology 

 This section provides a general description of the overall idea of signal classification and 

introduces the terms used to describe the types of signals used in this thesis.   

 Before proceeding any further into this thesis, the concept of signal classification must 

first be concretely defined.  Signal classification means to analyze different characteristics of a 

signal, and based on those characteristics, decide to which grouping or class the signal belongs.  

The resulting classification decision can be mapped back into the physical world to reveal 

information about the physical process that created the signal.  Often, when signal classification is 

performed, it is not the goal to determine to which class an entire signal belongs.  Instead, a signal 

is usually provided where it is known that a variety of different classes exist at different points 

throughout the signal.  For example, if the signal under analysis is represented in the time 

domain, the purpose of classification might be to determine that the first 15 minutes of the signal 

belong to class B, while the next fifteen minutes belong to class A, and so on.  In this case, all the 

principles behind classification remain the same as when the entire signal is classified, but instead 

of classifying the whole signal, only a segment of the signal is classified. 

 In order to perform classification upon signals, several analysis techniques are typically 

performed.  First, the characteristics or features upon which the signal is to be classified must be 

defined.  There are an infinite number of features that could be extracted from the signal for the 

purpose of classification, including the mean of the signal, its Fourier coefficients, and its wavelet 

coefficients [Mall98].  Based on the selected signal features, a classifier will determine to which 

class the signal belongs.  The output of the classification system, in which the class membership 

of the input signal is determined, can then be used to infer what event in the real world process 

occurred to produce the input signal.  In this thesis, multifractal analysis and Kohonen self-

organizing feature maps (SOFMs) are used to extract the critical features from signals, while 

neural networks are the tools used to perform the classification. 

 It may seem like overkill to use complicated techniques such as multifractal analysis and 

SOFMs to extract the important features from the signals when much simpler metrics such as the 
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mean and Fourier coefficients of the signal could be used.  However, these complex feature 

extraction and classification tools are required for this thesis because of the nature of the signals 

being classified.  Specifically, the signals under analysis in this thesis are non-stationary, 

stochastic, self-similar signals that originate from non-linear systems.  These terms describe very 

complex signals and may not commonly be known, hence they will each be briefly defined. 

 The term non-stationary, in the general sense, means that the statistical properties of a 

signal change over time.  More specifically, properties such as the signal’s mean, variance, 

kurtosis, and skewness do not remain constant over the entire duration of the signal, but rather, 

change from one point in the signal to the next.  A standard sine wave, for example, would be 

considered a stationary signal as its statistics remain constant.  The statistics for other signals, 

such as those produced by speech, clearly do not remain constant, making them non-stationary.  

Although an overall signal may not be stationary, usually smaller windows, or parts of those 

signals will exhibit stationarity.  For example, there is a maximum speed at which the vocal 

chords of a human’s voice box can change the sound which they are producing.  As a result, a 

voice signal is stationary for that small amount of time during which it is physically impossible 

for the vocal chords to change sounds.  Knowledge of the period over which a particular type of 

signal remains stationary is very valuable during signal analysis. 

 Stochastic refers to signals where the events in the signal occur in a random fashion and 

self-similar, at the simplest level means that if a portion of a signal is magnified, the magnified 

signal will look the same and have the same statistical properties as the original signal.   

 Linear systems are systems that abide by the principle of superposition.  Most systems in 

the real world are decisively non-linear meaning that superposition does not apply.  For example, 

humans are non-linear systems.  Consider a situation where a person is told to perform a chore 

and then correspondingly does so.  If that same person was yelled at twice as loud to carry out 

that same duty, he or she would not necessarily complete the task twice as fast.    

 Non-stationary, stochastic, self-similar signals originating from non-linear systems are 

challenging to analyze, but what makes matters even more complicated is that these signals are 

often composed of multiple different recordings, each of which contribute to the information 

content of the overall physical phenomena which created the signal.  Examples of such signals 

include multichannel audio signals and multiple lead electroencephalograms and 

electrocardiograms.  A classification system can choose to ignore the fact that multiple recordings 
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are required to completely define such signals and merely perform classification using the 

recording which is deemed the most important.  On the other hand, a classification system, such 

as the one developed in this thesis, can make use of the information held within the different 

recordings in an attempt to achieve superior results. 

 The goal of this thesis is not the analysis of a particular signal, rather it is the 

development of a general classification system which can be used to perform analysis upon non-

stationary, stochastic, self-similar signals originating from non-linear processes.  However, in 

order to verify the operation of the classification system and gauge its performance, fish 

trajectory signals are used.  These signals are the result of tracking the three-dimensional position 

of a fish in a fish tank when presented with various stimuli over an eight hour period.  The fish 

signals exhibit the desired stochastic, self-similar, non-stationary properties and originate from a 

non-linear system – a fish.  The fish trajectory signals also are composed of multiple recordings, 

one for each of the Cartesian co-ordinate axes so that the effects of utilizing multiple recordings 

during classification can be studied.  Sample plots of these signals are shown in Fig. A.2 in 

Appendix A.  The details of the experiment that generated these signals and a discussion of these 

plots are also provided in Appendix A. 

2.2 Fractals 

 This section introduces some of the fundamental concepts behind fractals, and explains 

how a specific fractal dimension, the variance fractal dimension, is calculated.  By computing the 

variance fractal dimension in a sliding-window fashion over an entire signal, a multifractal 

analysis is performed whereby a variance fractal dimension trajectory (VFDT) for that signal can 

be created.  It is the samples in this signal representing the fractal dimensions of the original 

signal which is used as the features from which to perform classification.  The use of the VFDT 

technique has been fairly limited thus far; however, the benefits of its use are significant.  The 

VFDT representation of the signal can assist in revealing the underlying characteristics of a signal 

which may not have been apparent when analyzing the original signal, while simultaneously 

compressing the signal into a more compact representation.  Being able to reduce the number of 

points needed to represent a signal is an invaluable procedure as it makes the classification 

process for a classifier much more practical.  Most importantly, the resulting VFDT 

representation of a signal is normalized, which is essential for the classification based on these 

extracted features. 
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2.2.1 Introduction 

 The first notion that must be understood in regards to fractals is that in the simplest sense, 

fractals are self-similar entities.  As previously defined, self-similarity means that no matter what 

magnification is used when viewing an object, its statistical properties, structure, and complexity 

remain constant [Mand82].  For example, consider the Koch curve, which is displayed in Fig. 2.1. 

 The lower of the two images shown is the standard Koch curve.  If the upper portion of 

the Koch curve is magnified, the resulting image looks identical to the original Koch curve itself, 

as can be seen in the upper image of the figure.  Mathematically, even if a portion of the Koch 

curve is repeatedly magnified, it will still look identical to the original, unmagnified curve. 

 The idea of an object looking the same regardless of what magnification it is viewed 

under is quite a contrast to the way most shapes and objects appear when magnified.  For 

example, if the upper portion of a hexagon is magnified, as shown in Fig. 2.2, the magnified 

portion does not look similar to the original, unmagnified hexagon.  Typically, as a portion of a 

non-fractal object is magnified repeatedly, its complexity will decrease to the point where the 

magnified portion will merely appear as a straight line.  With fractal objects, this is not the case.  

For example, the appearance and complexity of the Koch curve remains constant no matter the 

level of magnification used for viewing. 

                                                   

1 Adapted from http://www.jimloy.com/fractals/koch.htm last checked March 6, 2003 

 

 

Fig. 2.1:  The Koch curve fractal at various magnifications.1 
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 Another important concept to be cognizant of when studying fractals is that of fractal 

dimensions.  Typically, when individuals speak about dimensions, they are referring to the 

standard Euclidean dimensions which are discrete, integral numbers.  For instance, a line is 

considered a one dimensional object, a square is a two dimensional object, and a cube is a three 

dimensional object.  These integral dimensions can proceed to higher and higher arbitrary values, 

but objects with a dimension higher than the third dimension become difficult to visualize.  

However, it is also possible for objects to exhibit fractional dimensions.  In fact, the term fractals 

was coined to describe objects that have a dimension that is non-integral.  The Koch curve in Fig. 

2.1 is a fractal curve with a dimension of approximately 1.2619 [PeJS92], meaning that it has a 

greater complexity than a straight line, but is not quite a two dimensional object. 

 The importance of the dimensionality of an object is that it provides information 

regarding that object.  For example, if one is told that a particular drawing is displayed in two-

dimensional space, then even before that drawing is seen, an individual knows some of the 

characteristics of that drawing.  In particular, it is known that the drawing does not display a third 

dimension, but rather, stays within the flat bounds of two dimensions.  Likewise, dimensionality 

can be used to extract particular characteristics from a signal that is under analysis.  If the signal 

happens to exhibit self-similar characteristics, then fractal dimensions can be employed.  

Regardless of whether or not the dimension calculated is integral or non-integral, the dimension 

provides valuable information about the properties of the signal.  This thesis exploits the 

underlying fractal dimension of signals for the purpose of feature extraction and the ultimate goal 

of signal classification. 

 

Fig. 2.2:  A hexagon viewed at different magnifications. 
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2.2.2 Variance Fractal Dimension 

 To further consider the ideas that dimensions need not be integral and that fractal objects 

typically possess non-integral dimensions, the process of calculating the dimensionality of an 

entity must be explained.  Complicating matters is the fact that there are many different types of 

dimension.  These include topological dimension, box-counting dimension, as well as many 

others [PeJS92].  In certain cases the different types of dimensionality, when calculated, yield the 

same result for the same object.  However, at other times, the computation of the different 

dimensions provides different numerical values.  For the purposes of this paper, only one form of 

fractal dimension, the variance fractal dimension [Kins94], is utilized. 

 As the name suggests, the variance fractal dimension is based on calculations involving 

the variance of the amplitude increments of a signal.  The first concept required to calculate the 

variance dimension is to understand that the amplitude increments of a signal over a time interval 

∆t follow a power law relationship as shown in Eq. (2.1), where x(t) represents the signal and H is 

the Hurst exponent. 

 2
2 1 2 1[ ( ) ( )] ~| | HVar x t x t t t− −  (2.1) 

Intuitively this formula seems reasonable because it indicates that differences between points that 

are very close to each other in a signal will have a small variance.  For example, consider a 

situation where a 1 Hz sine wave is being analyzed.  If the signal is sampled such that the samples 

are only separated by 0.001 seconds, then the variance of the differences between all of these 

samples is not very high because the signal changes very little in that short period of time.  On the 

other hand, if the samples are separated by 0.25 seconds, the variance is significantly larger.  

Thus, as Eq. (2.1) suggests, as the time interval increases, so too does the variance. 

 The value of the variance fractal dimension is actually just the Hurst exponent, H, 

modified by two factors.  Because (2.1) is a power law relationship, it is easier to view when 

plotted on a log-log plot.  If a signal adheres to the relationship in (2.1), then when it is plotted on 

a log-log plot, it should yield a straight line.  The slope of that straight line divided by a factor of 

two is the Hurst exponent.  In mathematical terms, if 2 1| |t t t∆ = − and 2 1( ) ( ) ( )tx x t x t∆∆ = − , 

then the Hurst exponent can be calculated via a log-log plot using Eq. (2.2). 
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As mentioned previously, the variance fractal dimension is merely the Hurst exponent modified 

by two factors, which is shown in Eq. (2.3), where Dσ  is the variance fractal dimension, and E is 

the Euclidean dimension. 

 1D E Hσ = + −  (2.3) 

The Euclidean dimension is equal to the number of independent variables in the signal.  Thus, 

since this thesis concentrates solely upon Euclidean one-dimensional signals, E can be set to 1.  

Equation (2.3) then reduces to: 

 2D Hσ = −  (2.4) 

 The variance fractal dimension can be calculated repeatedly over the duration of a signal 

to compute the variance fractal dimension trajectory of the signal.  The process of calculating the 

VFDT of a signal essentially involves breaking up the entire signal into numerous sub-signals, or 

windows, and calculating the variance fractal dimension for each of these windows.  The 

concatenation of all these fractal dimensions to form a signal is the signal’s VFDT. 

 A multifractal signal is a signal whose fractal dimension changes over time.  Conversely, 

a simple fractal signal’s fractal dimension remains constant.  The process of computing a signal’s 

VFDT is a multifractal characterization as it will expose if a signal contains multiple fractal 

dimensions.  Should the VFDT be computed upon a simple fractal signal, then the resulting 

VFDT is simply constant.  There are several benefits in representing a signal in the fractal domain 

including dimensionality reduction, underlying feature exemplification, and normalization. 

 Keeping in mind that the VFDT merely involves taking a signal and transforming it so 

that it is represented in the multifractal domain, the following steps [Kins94] outline the 

procedure used to calculate the variance fractal dimension trajectory of a signal: 
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1. Select values for the window size, NT, and window displacement, d.  The window size is 

the number of points that are held in each of the smaller sub-signals for which the 

variance fractal dimension is calculated.  The size of the window should be selected 

based on the stationarity of the signal under analysis.  The displacement indicates how far 

the window shifts following each variance fractal dimension calculation, and determines 

the resolution of the resulting VFDT.  Both the window and displacement parameters 

have an effect on the number of points in the VFDT.  A high resolution is usually desired, 

indicating a smaller displacement should be used.  However, the displacement should not 

be given an extremely small value since this would result in significant windowing 

artifacts because of the excessive correlation between windows. 

2. Next, the change in magnitude, x∆ , is required in order to calculate the Hurst exponent, 

as seen in Eq. (2.2).  Additionally, as the equation indicates, the time period over which 

x∆ is being calculated must be specified.  In (2.2) the difference in time was indicated 

by t∆ .  However, when implementing the VFDT algorithm, the signal being worked with 

is digitized and hence the separation should be presented by the number of samples rather 

than time.  Hence, the number of samples separating two points for which x∆ is 

calculated is called nk, and is set as follows: 

 2 , 1k
kn k= >  (2.5) 

 The base of 2 in Eq. (2.5) can be any integer number greater than zero.  For this thesis 

only a value of 2 is considered.  Thus, nk will take on the values of 2, 4, 8, 16, and so on 

as k is incremented. 

3. Determine the maximum allowable separation, nKhi, between two points for which x∆ can 

be calculated by using the following formula: 

 
log log 30
log 2 log 2

T
hi

NK
   

= −   
   

 (2.6) 

 The first factor in Eq. (2.6) ensures that the two points remain within the bounds of the 

current window.  However, if the first factor were left by itself, then the two maximally 

separated points for which x∆ is calculated would cover almost the entire window.  Thus, 

in order to remain statistically valid, there must be room in the window for at least 30 

non-overlapping, distinct x∆ intervals.  The subtraction factor in (2.6) ensures that the 
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maximum allowable separation of the two points involved in the x∆ calculations stays 

small enough so that at least 30 x∆ calculations can be performed within the window. 

4. Determine the minimum allowable separation between two points, Klow, for which x∆ is 

calculated.  In order to ensure that the correlation between adjacent values is not too 

strong, Klow must be a value greater than 1. 

5. Create a pointer indicating the beginning of the current window. 

6. Position the pointer to the beginning of the signal. 

7. Let the first NT points following the position pointer be considered the current window. 

8. Cycle a variable, k, from Klow to Khi. 

a. For each value of k, calculate the variance of x∆ for samples separated by nk 

points using the following formula 

 
2

1

1( ) ( ) ( )
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k j
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 (2.8) 

b. For each value of k, calculate Xk = log[nk] and Yk = log[ ( )kVar x∆ ] and store the 

results in preparation for calculating the slope of the log-log plot.  

9. Calculate the slope of the log-log plot, s, using the following formula, where K = Khi - 

Klow + 1 

 1

2

1

( )( )

( )

K

i i
i

K

i
i

X X Y Y
s

X X

=

=

− −
=

−

∑

∑
 (2.9) 

10. Compute the Hurst exponent using 
1
2

H s= . 

11. Calculate the variance fractal dimension using Eq. (2.4). 
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12. Move the window pointer farther down the signal.  The distance to move the pointer is 

equal to the displacement specified in step 1. 

13. Repeat steps 7 through 12 for each window until the end of the signal is reached. 

 When the above algorithm is implemented, the resulting program will process a signal 

and calculate its VFDT.  With these fractal dimension features extracted from the signal, the 

actual classification of the signals can be pursued. 

2.3 Neural Networks 

2.3.1 Introduction 

 Artificial neural networks constitute a vast field of study, largely because they are tools 

that have been proven to be useful in many different applications in a variety of fields.  

Additionally, the field of neural networks is very extensive because there are so many different 

types and configurations that are open to investigation.  Neural networks, in general, have been 

studied and utilized for several decades.  Different types of neural networks have played a role in 

numerous research projects ranging from speech recognition to stock market predictions.  New 

types of neural networks are still under investigation, and older configurations continue to be 

refined and modified, indicating that the neural network paradigm is still thriving. 

 A neural network, in the most generic sense, is a function approximator.  A simple neural 

network that implements an inverter, an and-gate, or a sine function can be implemented, but 

there is little practical purpose for doing so because these functions can be programmed directly.  

Neural networks are more often put to use in applications involving classification, noise 

reduction, or prediction; situations in which the function mapping between the inputs and outputs 

is complex and unknown. 

 Signal classification is the major focus of this paper, hence this section of the report will 

explore the use of neural networks as classifiers.  Neural networks are by no means the only 

technique that is available for classification purposes.  For example, rather than implementing a 

neural network, one could use an expert system [WeKu91] to perform classification.  However, 

there are many advantages to using neural networks rather than other techniques.  One of the 

main advantages of neural networks is that they have the ability to learn, adapt and generalize.  In 

contrast, expert systems merely emulate the decisions of a human expert.  An expert system does 
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not have the ability to adapt or learn, and as a result, its performance is limited by the knowledge 

of the expert who designs it.  Since a neural network can learn and generalize, it can surpass the 

abilities of the experts who created it, and potentially, uncover information that eluded the 

experts. 

 The information presented in this thesis will introduce the basic global concepts behind 

the general class of multilayer feedforward neural networks.  Once these broad concepts have 

been introduced, the main types of neural networks considered in this thesis, namely 

backpropagation, complex domain, and probabilistic neural networks, as well as Kohonen self-

organizing feature maps, will be highlighted and explained. 

2.3.2 Basic Concepts 

 The first concept to be mentioned is the general topology of multilayer feedforward 

neural networks.  Neural networks consist of two main components:  neurons and synapses, as 

can be seen in Fig. 2.3. 

 The neurons of a neural network are the units responsible for performing the calculations.  

Although the calculations performed by each neuron are relatively simple, when combined with 

the calculations of all the other neurons, the neural network as a whole can solve very 

sophisticated and complex problems.  Neural networks accomplish their goal by passing 

messages from neuron to neuron through synapses.  The synapses are simply the connections 

between neurons and typically have weights associated with them.  These weights are adjusted so 

that the neural network computes the function that it is supposed to approximate.  However, the 

inclusion of weights on the synapses is not mandatory.  Some neural networks, such as the 

 

Fig. 2.3:  A multilayer feedforward neural network. 
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probabilistic neural network, define their functionality using other methods which will be 

discussed later in this report.  Fig. 2.3 further demonstrates that neural networks have inputs and 

outputs to interact with the outside world. 

 An additional observation concerning the neural network shown in the above figure is 

that it is organized into several layers of neurons.  This aspect of grouping neurons into one or 

more layers is a main characteristic of multilayer feedforward neural networks.  Multilayer 

feedforward neural networks have three or more layers:  an input layer, an output layer, and one 

or more hidden layers.  Typically, the neurons in each layer have different jobs to perform.  In 

Fig. 2.3, the three neurons on the extreme left make up the first layer, the input layer, of the 

neural network.  The two neurons in the middle of the diagram form the second layer of the 

neural network, the hidden layer.  Finally, the remaining two neurons, located on the extreme 

right, constitute the output layer.  It should also be noted that information in the network 

progressively flows from one neuron layer to the next, meaning that the output synapses from 

neurons in a particular layer do not connect to neurons in the same or previous layers. 

 Given the general characteristics and architecture of a multilayer feedforward neural 

network, the first operational detail that will be addressed is the manner in which the neurons 

operate.  The following description applies primarily to the multilayer feedforward class of neural 

networks, and it is not applicable to some more specialized types of neural networks, such as 

probabilistic neural networks.  Despite the lack of universality with the following description, it 

will provide insight into the specifics as to how the neurons in a multilayered feedforward neural 

network operate.  The operational details of the neurons in other neural networks are not 

significantly different from the ideas presented here. 

 The operation of the input neurons is quite simple.  The input neurons are merely used for 

distribution purposes as their task is to take the inputs that are supplied to the neural network and 

distribute them to each of the hidden neurons.   

 As can be seen from Fig. 2.3, the hidden neurons have one or more input and output 

synapses.  Fig. 2.4 shows how a hidden neuron processes the signals it receives via its input 

synapses, and the procedure through which it generates an output.  In the figure, xi represents an 

input value along a synapse and wi is the corresponding synaptic weight.  The neuron first 

multiplies each input by the weight of the synapse on which it is traveling and then sums these 

weighted inputs.  It should be noted that Fig. 2.4 includes an additional bias input for the neuron.  
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Unlike the other synapses, which connect the neurons together, the bias input does not originate 

from another neuron.  The bias input is simply an additional input to the neuron that always has 

an input value of one.  The bias input behaves just like any other input in that the weight of the 

synapse, wn, multiplied by the input value for that synapse, one, is added to the sum.  This 

weighted net sum is abbreviated in the equation as net.  The f(net) located inside the neuron of 

Fig. 2.4 is the neuron’s activation function, which is used to transform the multiple inputs into the 

neuron into a single output.  The output of the neuron is simply the result of the activation 

function upon the net sum: 

 
1

( ) ( )
n

i i n
i

Output f net f x w w
=

= = +∑  (2.10) 

The activation function used by the hidden neurons depends on the application, but most neural 

networks use a sigmoid activation function.  Sigmoid activation functions are smooth, 

continuous, monotonically increasing, and are “S-shaped”.  There are a variety of different 

sigmoid activation functions that can be used with a neural network, but the particular function 

chosen typically has little effect on the overall performance of the network.  A common sigmoid 

function to use is the logistic function, which has the following formula: 

 
1( )

1 xf x
e−=

+
 (2.11) 

Other common sigmoid activation functions include the hyperbolic tangent and arctangent 

functions [Mast93]. 

 Usually the output neurons of the multilayer feedforward neural network are designed to 

behave in exactly the same fashion as the hidden neurons, but this is not a requirement. 

 

Fig. 2.4:  The basic operation of a neuron. 
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 Up to this point, a description of the topology of multilayer feedforward neural networks 

has been presented, and the general operation of the different types of neurons explained.  

However, the matter of how the overall neural network is configured to achieve its overall desired 

function has not been addressed, and such an explanation is now in order. 

 One of the main advantages of neural networks, as mentioned previously, is that they 

have the ability to learn and generalize.  The operational description of the different neurons 

certainly has not substantiated these claims.  The reason that neural networks have looked so 

bland up until this point is that only the execution of a multilayer feedforward network has been 

described.  That is, the only events that have been detailed so far are the steps involved in 

generating an output when a trained network is presented with an input.  The real learning 

involved with neural networks does not take place when the network is executed, but rather when 

the network is trained. 

 There are two main categories of algorithms that can be used to train a neural network: 

supervised and unsupervised training algorithms.  With supervised training, the neural network is 

provided with both input values as well as the desired output that is associated with each input.  

In contrast, unsupervised neural network training involves providing the neural network with just 

a set of inputs, but not outputs.  In both supervised and unsupervised learning, the basic concept 

of training involves optimizing a particular parameter, or set of parameters, throughout the neural 

network.  For example, in the general multilayer feedforward neural network, training involves 

finding an acceptable set of synapse weights so that the neural network can produce the correct 

output for any given input. 

 When training a multilayer feedforward neural network, whether it be supervised or 

unsupervised, sample inputs are provided to the neural network  After analyzing the outputs that 

are produced by the neural network, the parameters being optimized are updated.  Each repetition 

of presenting the neural network with one or more inputs and adjusting the parameters is known 

as an epoch.  The number of input presentations that are used to train the network during each 

epoch is known as the epoch size.  There are some heuristics [Mast93] which outline the epoch 

size and the number of epochs that a neural network requires in order to be trained, but the 

general idea is to repeat the training process until the error reaches an acceptable level.  The exact 

manner in which the various parameters are updated during an epoch is different for each type of 
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neural network, and thus will be discussed as the different types of neural networks are 

introduced. 

 When solving any practical problem, it is not feasible to train the neural network with 

every possible input combination.  In fact, in most instances, the entire set of all possible inputs is 

not known.  Instead, the designer has a set of sample inputs for which he or she knows the correct 

output.  This set of samples is known as the training set.  Choosing an effective training set is 

often a challenging problem, as one wants the training set be representative of the entire set of 

possible inputs, but the number of known samples from which to select the training set is often 

not very large. 

 Once a neural network is trained, it is almost always necessary to monitor how well the 

network performs.  In order to gauge the performance of the neural network, a second set of 

inputs, known as a testing set, must be selected from the sample inputs.   The testing set is 

presented to the neural network after it has been completely trained, and the performance of the 

neural network is measured by calculating the percentage of the testing set for which the neural 

network provides the correct output. 

 As seen in Fig. 2.5, the testing and training sets must not overlap.  The reason for having 

testing and training sets completely separated involves the notions of memorization and 

generalization.  It is relatively easy to train a neural network that is capable of memorizing the 

correct responses for each input in the training set.  If a neural network is evaluated by using a 

testing set that is identical to the training set, it should perform with 100% accuracy.  However, 

this “test” does not prove anything except the fact that that the neural network was able to 

 

Fig. 2.5:  Mutually exclusive training and testing sets. 
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memorize the training set.  This performance gauge provides no real indication as to how the 

neural network will react if it is presented with an input that it has never seen previously.  In any 

practical application, the neural network must be able to generalize so that it can produce correct 

outputs for inputs that have not been introduced to it during training.  Thus, in order to achieve an 

accurate measure of generalization and a true unbiased gauge of performance, the testing and 

training sets must be mutually exclusive of one another. 

 This concludes the introduction to the fundamental ideas behind neural networks.  

Although the main concepts behind multilayer feedforward neural networks were explained, there 

are still many other details that have to be dealt with when designing a neural network.  The 

answers to these design problems are not trivial and vary from application to application.  Even 

decisions such as selecting the number of hidden neurons and the number of hidden layers 

[Mast93] can be difficult.  There are numerous heuristics that can be used in order to determine 

near-optimal values for these parameters, but these heuristics are many and varied.  Their 

intricacies will not be further elaborated upon at this time, but the reasons for making all design 

decisions and the ramifications of these decisions will be detailed later in the thesis. 

2.3.3 Backpropagation 

 The backpropagation algorithm is the most common and basic method of training the 

general class of multilayer feedforward neural networks.  One of the reasons the backpropagation 

algorithm is used so frequently is that it is fairly simple.  The downside to the backpropagation 

training algorithm’s simplicity is that it is slow.  Another disadvantage of backpropagation is that 

it often has problems dealing with local minima.  Despite these shortcomings, the 

backpropagation training algorithm has a proven record of providing decent results in practice, 

and as such, is taken into consideration in this thesis.  Furthermore, the backpropagation 

algorithm provides the foundation for training the more advanced complex domain neural 

networks, described later in this thesis.  This section will provide the concepts and formulas 

required for understanding the operation of the backpropagation training algorithm.  Full 

derivations of the mathematics behind the backpropagation training algorithm can be found in 

many neural network texts [Hayk99]. 

 The backpropagation algorithm is a supervised form of training that is used to determine 

acceptable values for the synapse weights in a multilayer feedforward neural network.  The basic 

premise behind backpropagation is as follows.  First, the neural network calculates the output for 
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an input training vector.  Since backpropagation uses supervised training, the output produced by 

the network can be compared against the output that is desired for that particular training vector.  

More often than not, the desired response and the actual response will not be identical.  In other 

words, there is an error associated with the output produced by the neural network.  One common 

method for measuring the size of the error is to calculate the mean square error using formula 

(2.12), where t is the correct or target output and o is the output that is actually produced by the 

particular output neuron. 

 2( )E t o= −  (2.12) 

 The goal of adjusting each of the synapse weights is to attempt to make the error as small 

as possible.  The backpropagation training algorithm is a gradient descent algorithm, and as such, 

it makes use of gradients in an attempt to minimize the error function.  The gradient of a function 

indicates the direction of maximum increase of the function, thus the direction completely 

opposite to the gradient is the direction of maximum decrease.  Hence, the backpropagation 

algorithm calculates the gradients of the error function and then adjusts the weights to move 

slightly in the opposite direction in an attempt to decrease the error as much as possible. 

 Mathematically, the gradients are the partial derivatives of the error function with respect 

to each synapse weight.  The formulas for calculating the gradients vary depending on whether 

the gradient is being calculated for an output or hidden neuron.  The backpropagation algorithm 

first starts by calculating the gradients for the output neurons using the formula given in Eq. 

(2.13), where oi denotes the output of the ith hidden layer neuron, f is the output neuron’s 

activation function, tj is the target output for the jth output neuron, oj is the actual output produced 

by the jth output neuron, and netj is the sum of the weighted inputs to the jth output neuron. 

 ( )( )i j j j
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E o f net t o
w
∂ ′= − −
∂

 (2.13) 

Often this equation is broken down into two equations as follows: 
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 The gradient equations for hidden neurons is slightly different from those of the output 

neurons because, unlike the output neurons, hidden neurons don’t have any “correct” output that 

they are supposed to match.  Instead, the hidden neurons make use of the δ values that were 

previously calculated for the output neurons.  Thus, the gradients for the hidden neurons are 

calculated using the formulas in (2.15), where the index k denotes a particular neuron in the 

adjacent layer closest to the output of the network, index i indicates an individual neuron in the 

adjacent layer closest to the input of the network, and index j indicates the current hidden neuron 

whose weights are being updated. 
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 As (2.14) and (2.15) demonstrate, the calculation of the partial derivatives begins at the 

output layer, and then continues layer by layer until the input layer is finally reached.  It is this 

propagation backwards through the network where the backpropagation algorithm gets its name.  

However, simply calculating the partial derivatives does not improve the neural network in any 

way; the gradients need to be used to adjust the weights of the neural network.  This weight 

adjustment is achieved by using (2.16), where wnew is the new weight value, wold is the old value 

of the weight, and α is the learning rate. 

 new old
old

Ew w
w

α ∂
= −

∂
 (2.16) 

The learning rate is a very important parameter in the backpropagation algorithm as it determines 

the amount by which the weights are modified during each epoch.  If the learning rate selected 

proves to be too small, then the backpropagation algorithm will take a long time to converge to a 

set of acceptable synapse weights.  On the other hand, if the learning rate selected is too large, 

then the weights may vary so much from epoch to epoch that the weights do not converge at all.   

 The backpropagation training algorithm, in its most basic form, merely calculates the 

gradients and updates the weights using (2.14), (2.15), and (2.16) over a number of epochs.  

However, some of the above formulas are rather inefficient when used in the backpropagation 

algorithm, and a few minor modifications can be implemented to improve performance.  As 
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mentioned previously, the weights of the neural network are adjusted in the direction which will 

result in the maximum decrease in error.  This approach is reasonable, but at times it can cause 

large oscillations in the descent to the minimum, thus slowing convergence.  To circumvent the 

oscillation problem, a momentum factor is often included in the weight update calculations as 

seen in Eq. (2.17), whereβ is the momentum coefficient and old is just new from the immediately 

preceding epoch. 

 new old
old

new old new

E
w

w w

β α ∂
= −

∂

= +
 (2.17) 

By incorporating the momentum factor, the amount that the weights are changed is smoothed so 

that rapid fluctuations are reduced. 

 One other issue regarding the backpropagation algorithm relates to the values that were 

initially assigned to the synapse weights.  All of the above formulas assumed that there was 

always some previous weight value to adjust.  The typical way to set the initial weights for the 

first epoch is to set all the weights to random numbers. 

2.3.4 Complex Domain Neural Networks 

 Neural networks that work with real valued inputs are sufficient for most situations, but 

when the inputs to the neural network are naturally represented as complex numbers, it is 

advantageous to use a neural network that takes this representation into account.  Complex valued 

data can be provided to a real domain neural network by separating the components of the 

complex values and providing them separately as inputs; however, the strong correlation between 

the components is lost.  While in theory, real valued neural networks have the same ability as 

complex domain neural networks, in practise, the training of complex domain neural networks is 

typically faster and they often generalize better, especially when only a sparse training set is 

available. 

 There are many examples where the data is naturally represented as complex numbers.  

One such example is the frequency spectrum resulting from a Fourier transform, where each 

frequency value is represented by both a magnitude and phase.  Other examples include multiple 

simultaneous signal recordings, where each signal contains different information, such as 

multichannel audio signals and multiple lead electroencephalograms and electrocardiograms.  
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The fish trajectory signals used in this thesis, consists of a three dimensional trajectory of a fish, 

whereby each sample in the signal can be considered as consisting of three values, one for each of 

the Cartesian co-ordinate axes.  By restricting the classification to a single plane, complex valued 

signals can be obtained by utilizing the samples from one of the axes as the real part of the 

samples and the samples from the other axis as the imaginary part. 

 The architecture of the complex domain neural network is identical to that of its real 

valued counterpart.  The actual operation of the complex domain neural network works in an 

analogous manner to that of real valued networks except that each input value and synapse weight 

is a complex number consisting of both a real and imaginary part.  Consequently, the computation 

of the net input to the neuron, as shown in Fig. 2.4, requires complex multiplication.  The 

activation function used in this thesis for the complex domain neurons is a scaled version of the 

hyperbolic tangent function, tanh(1.5x) [KaKw92], which is applied to the magnitude of the 

complex valued input and then multiplied by the unit vector of the input so that the output of the 

activation function maintains the same direction as the input [Mast94].  Since the purpose of 

using this neural network in this thesis is for classification, which usually results in binary 

decisions for the inclusion or exclusion of an input to a particular class, it is inefficient to employ 

complex-valued outputs as it does not aid in making the classification decision.  Rather, for 

classification purposes, the imaginary part of the output of the output neurons is discarded and the 

decisions are based solely upon the real part of the output. 

 The extension of the neural network architecture into the complex domain is rather 

straightforward, but training is made more challenging because the error derivates, which are 

required for most training algorithms, demand complex analysis in order to compute them.  Thus, 

in order to minimize the complexity of this neural network, this thesis employs the 

backpropagation training algorithm in order to optimize the synapse weights.  The idea behind the 

backpropagation algorithm in the complex domain remains the same as that in the real domain, 

whereby the error gradient is used to indicate the direction with which to modify the weights.  

The difference in the complex domain is that both the real and imaginary parts of the weights 

must be updated and the derivatives become more complicated.  The extension of Eq. (2.16) to 

the complex domain is shown in Eq. (2.18), where the real and imag subscripts indicate the real 

and imaginary parts of the weights. 
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The full derivation of the error gradients shown on the far right of (2.18) will not be developed 

here, but the reader is encouraged to read the full derivation in [Mast94]. 

2.3.5 Probabilistic Neural Networks 

 This section of the paper will focus on another neural network called the probabilistic 

neural network (PNN).  Unlike multilayer feedforward networks employing the backpropagation 

algorithm, PNNs are based on sound mathematics.  Meisel [Meis72] first introduced the basic 

mathematical concepts behind PNNs thirty years ago.  At that time, Meisel’s ideas seemed to 

have very little practical value because the processing of the equations he derived requires a fairly 

substantial amount of memory.  Today, memory in computers is economic and plentiful, so the 

main disadvantage to Meisel’s work has been removed.  As a result, the use of PNNs has started 

to see some resurgence. 

 Even though interest in PNNs has recently begun to increase, it is rather surprising, given 

the PNN’s numerous advantages, that more research and development has not been performed 

using PNNs.  One major advantage of PNNs that should attract people’s attention is the fact that 

the training time is very fast.  In fact, PNNs are able to train several orders of magnitude more 

quickly than neural networks using backpropagation training [Wass93].  Another significant 

advantage of probabilistic neural networks is the fact that, when used as classifiers, their 

classification accuracy asymptotically approaches Bayes optimal [Wass93].  Furthermore, PNNs 

do not have nearly as many problems as other neural networks regarding local minima.  One 

final, practical advantage of PNNs is that training samples can be added or removed without 

extensive retraining of the neural network.  This compares very favourably to neural networks 

based on backpropagation training, which may require that the entire network be retrained when 

training samples are added or removed, a very time consuming process. 

 Of course, if that were all to be said about PNNs, then they would undoubtedly be the 

most popular form of neural network in use today.  Unfortunately, there are a few disadvantages 

with the use of PNNs.  The first drawback with PNNs is the fact that they are not as general as 

many other types of neural networks.  PNNs are predominately designed for classification 
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purposes.  They can be forced into performing other tasks, but the original intent of PNNs was 

classification.  Two more difficulties with PNNs are that they are slower to execute than most 

other neural networks, and as previously stated, they require a large amount of memory. 

 The advantages of PNNs definitely appear to outweigh the disadvantages, especially 

when the task of the neural network is to perform classification.  The potential for PNNs to 

approach a Bayes optimal decision indicates that very high classification rates can be attained by 

a PNN if it is designed properly.  Because of this substantial classification potential, PNNs will be 

discussed thoroughly in this thesis. 

 As a means of introduction, the mathematical concepts behind PNNs will first be 

introduced, followed by a description of how these ideas can be molded into the framework of a 

multilayer feedforward neural network.  The first concept that requires introduction is the Bayes 

optimal decision rule and how it pertains to classification.  Consider a case in which there are a 

number of objects known to be derived from a number of different classes.  Simply put, the goal 

of a classifier is to identify what class a new, unidentified object belongs to.  The Bayes optimal 

decision rule for determining which class an unidentified object should be assigned to, is 

expressed as follows, in which the object is assigned to class i provided that: 

 ( ) ( ),i i i j j jh c f X h c f X j i> ≠  (2.19) 

where hn is the prior probability that new object belongs to class n, cn is the cost of misclassifying 

an object that belongs to class n, and fn is the probability density function (PDF) of class n.  It 

must also be noted that X is the input vector that will be classified.  Typically, when dealing with 

PNNs the prior probabilities and cost of misclassification are not known a priori and are made to 

be equal, hence Bayes optimal decision rule reduces to: 

 ( ) ( ),i jf X f X j i> ≠  (2.20) 

This rule indicates that if the PDFs of the different classes are known, then the best classification 

decision can be made by merely making a few simple comparisons.  Unfortunately, the 

probability distributions of the different classes are not usually known and are much too 

complicated to attempt to approximate with simpler distributions. 
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 In order to circumvent the problem of unknown probability distributions, Parzen [Parz62] 

introduced a method for approximating the PDFs of each class by using training samples from 

each of the classes.   Mathematically, the PDF for a single class can be approximated using Eq. 

(2.21), where σ is a smoothing parameter, W is the weighting function, X is the unknown input 

sample to be classified, Xik is the kth training input from the ith class, n is the number of training 

inputs for class i, and gi(x) is the PDF estimate for class i. 
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As the number of sample inputs, n, for class i increases, Eq. (2.21) approaches the true PDF for 

class i.  When all of the PDF estimations are calculated, they are used in Eq. (2.20) in place of the 

true PDFs and the classification decision is made. 

 There are still two facets of (2.21) that require further explanation:  the weighting 

function, W, and the scaling parameter, sigma, σ.  For estimating the PDFs, a weighting function 

is needed so that when the unknown sample to be classified is in close proximity to a particular 

training sample (i.e. the input to the weighting function is small), the weighting function produces 

a large value.  In other words, when the unknown sample is quite similar to one of the training 

samples from a particular class, the value of the estimated PDF for that class should increase 

rather substantially.  On the other hand, if the unknown sample and an input training vector are 

not very close to one another (i.e. the input to the weighting function is large), the weighting 

function should produce a small value.  In this case, the unknown input is quite different from the 

training sample from the particular class, and as such, the PDF for that class should not be 

increased much at all.  Typically, the proximity or distance between the training sample and the 

unknown input is measured using Euclidean distance.  The weighting function often used is the 

Gaussian function because it exhibits the aforementioned properties and is relatively easy to 

calculate.  By setting the weighting function to the Gaussian function, (2.21) becomes: 
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where p is the length of the input vector, X. 
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 The second aspect of the PNN formulas that still requires clarification is the role of the 

scaling parameter, sigma.  The scaling parameter dictates how wide an area the weighting 

function takes into account when determining the contributions of each training sample.  If sigma 

is selected to be too small, then only those training samples that are extremely close to the 

unknown input will have any major contribution to the estimated PDFs.  As a result, the 

classification system simply breaks down to a nearest neighbour classifier.  If, however, the 

sigma selected is too large, then even training samples that are separated by a great distance from 

the unknown input will have a large contribution to the estimated PDFs, causing the system to 

display matched filter behaviour.  Hence, some effort must be put forth to find an appropriate 

scaling parameter for the particular classification problem.  Fortunately, in most problems, there 

is a range of values that will yield acceptable results [Wass93][Spec88], as can be seen in Fig. 

2.6.  Hence, since there is typically a plateau of sigma values producing optimal results, 

extremely intense algorithms do not have to be utilized to find an exact, superior sigma value.  

 It should also be mentioned at this point that multiple sigma values can be employed 

when using a PNN.  For example, different sigma values can be utilized for each of the different 

classes.  Separate sigma values for each class can be useful if some classes are very tightly 

defined (the training samples from such classes are very similar to one another) while other 

classes are more loosely defined (the training samples from such classes vary over a wider range).  

The idea of using different sigma values for each class is considered in this thesis.  The formula 

for calculating the PDFs for such a multi-sigma PNN is almost identical to Eq. (2.22) and is given 

in (2.23). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.6:  Correct classification rate as a function of sigma,σ. 
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The only difference between equations (2.22) and (2.23) is the presence of the subscript i for each 

sigma, indicating its class membership. 

 Now that the mathematics behind the PNN have been described, the manner in which the 

math is mapped to the architecture of a multilayer feedforward network, as first performed by 

Specht [Spec88], will briefly be explained.  The architecture of a PNN is organized into four 

layers:  the input layer, pattern layer, summation layer, and output layer, as seen in Fig. 2.7. 

 The role of the input layer in the PNN is virtually identical to that of the other neural 

networks described thus far.  In essence, the input layer accepts input values from the outside 

world and then distributes those inputs to each of the neurons in the pattern layer.  No 

computations are performed.  Each neuron in the pattern layer corresponds to a training sample of 

the PNN.  Notice that for Fig. 2.7, the neurons in the pattern layer have been grouped into three 

sets representing three different classes.  The job of each pattern layer neuron is to compute the 

 
Fig. 2.7:  Basic architecture of a PNN. 
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result of the weighting function.   

 The summation layer neurons have a different task to fulfill than that of the pattern layer 

neurons.  There is a single summation layer neuron for each class.  A summation layer neuron 

accepts the result of the weighting functions for each training vector belonging to its class, and 

then calculates the sum.  In essence, the summation layer is performing the summation as seen in 

(2.22) and (2.23). 

 Generally, there is only one neuron in the output layer in the basic PNN.  The output 

neuron accepts all the results from each of the summation neurons and selects the class that 

generates the largest sum. 

2.3.5.1 Probabilistic Neural Network Training 

 Now that the mathematics behind PNNs and the method by which those mathematical 

functions are formed into a neural network architecture have been explained, the next topic that 

must be discussed is the process of training a PNN.  As indicated earlier, the scaling parameter, 

sigma, must be optimized such that it matches the cluster sizes of the different classes.  To 

perform this optimization, a two step line minimization algorithm is used [Mast95].  Specifically, 

the minimum must first be bounded, and then a search over the bounded interval is performed to 

find the actual minimum. 

 At its roots, single sigma optimization is merely a single variable optimization problem.  

Optimization problems are typically easily resolved provided the function one is attempting to 

optimize is known.  The process of differentiating the function and setting the result to zero yields 

the function’s minima and maxima.  However, in the case of optimizing sigma, the exact 

description of the function is not known.  As a result, other means of optimizing sigma must be 

used.  The only way to definitively find the globally optimal sigma value is to search the entire 

problem space.  However, this is obviously not a practical solution, as it would require an infinite 

amount of time. 

 As mentioned, the line minimization algorithm used in this thesis for optimizing sigma 

begins by attempting to bound the minimum.  This process entails the selection of several trial 

sigma values within a given range, and then evaluating each trial sigma to observe how it 

performs.  When complete, the algorithm returns three sigma values.  The middle sigma produces 

the best results out of the trial sigma values.  The first and third sigma values returned are the trial 
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points to the immediate left and right of the middle sigma value.  Obviously the first and third 

values returned do not perform as well as the middle value.  Hence, there must be a minimum in 

this interval defined by the three sigma values.  The minimum in this interval may not be the 

absolute global minimum, but it is assumed that it will provide adequate performance. 

 The bounded interval defined by the three sigma values found in the first stage can be 

quite large, but the second step of the line minimization will usually locate the minimum after 

completion of a small number of trial points.  The algorithm used for the second step of the line 

minimization process utilizes a sectioning algorithm in an attempt to minimize the number of trial 

sigma values required to locate the minimum.  This portion of the line minimization algorithm 

begins with the best sigma produced in the bounding stage.  The algorithm compares the distance 

between the current minimum sigma value and its left neighbour, as well as the current minimum 

sigma value and its right neighbour.  The algorithm selects the larger of the two intervals in order 

to search for a better minimum.  The value of the new trial sigma, located in the larger of the two 

intervals, is dictated by the particular sectioning algorithm used.  In bisectioning, the most 

intuitive case, the trial sigma is the point in the middle of the interval; of course, the interval 

could be sectioned in any number of other ways.  If the trial sigma produces a better result than 

the current best sigma, then the optimal sigma and its bounds are updated.  On the other hand, if 

the trial sigma does not outperform the current best sigma, the optimal sigma remains the same, 

but the bounding points are altered to narrow the search interval.  This process is repeated until it 

is determined that the current optimal sigma produces sufficiently accurate results, or the bounded 

interval gets so small that new trial sigma points are only slightly different from the current best 

sigma. 

 The above line minimization algorithm is by no means the most sophisticated method for 

finding a near-optimal sigma value.  There are many more complex methods, such as genetic 

algorithms and simulated annealing, that could be utilized for this optimization step, but the two 

step line minimization algorithm presented here is much faster than most other algorithms, and 

still is very effective.  As Fig. 2.6 indicates, there is usually a range of acceptable sigma values, 

hence this simple optimization algorithm will often produce sufficient results in a fraction of the 

processing time. 

 One matter that has yet to be mentioned is the manner by which the validity of a sigma 

value is determined.  The procedure outlined here for evaluating the performance of a particular 
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sigma is called jackknifing [Mast93].  Jackknifing is a reliable method for evaluating different 

sigma values because it provides a very good representation of how well a particular sigma 

performs, while at the same time does not require an excessive number of training samples. 

 When training the PNN, several known input samples are used to serve as examples from 

each of the different classes.  These known examples are the network’s training set.  The premise 

behind jackknifing is to train and test the PNN k times, where k represents the number of training 

data samples.  During each of the k trainings sessions, one of the training sample inputs will not 

be included in the training process.  Then, once the PNN has been trained, the single training 

vector that was excluded will be presented to the PNN to be classified.  During each of the k 

training and testing sessions, should the single excluded training input be incorrectly classified, 

the sigma value receives a point.  The lower the score a sigma receives the better, as the score 

indicates the total number of inputs the PNN has incorrectly classified. 

 The jackknifing metric provides a reasonable measure of performance for a particular 

sigma value when the goal is to try to optimize sigma.  However, it must be stressed that 

jackknifing is a biased measure of performance because the testing inputs are being used to train 

the neural network.  As a result, the true ability of the PNN should be measured once training has 

been completed.  This measurement would be performed by attempting to classify a testing set 

which does not include samples that were present in the training set. 

 A few points should be mentioned about the manner of optimizing sigma values when a 

different sigma is used for each of the different classes.  In this scenario, the problem has been 

extended to a multivariate optimization problem, and as such, is slightly more difficult.  The 

technique utilized in this thesis to determine an acceptable set of sigma values is a conjugate 

gradient method.  As conjugate gradient methods are standard mathematical entities, a full 

description will not be provided here, but there are many reference materials available that 

describe such algorithms in full detail [PrFTV88]. 

 One requirement for the conjugate gradient algorithm that must be discussed is that of a 

continuous error function.  When performing single sigma optimization, the jackknifing 

technique measures the performance of a particular sigma value based on a point scoring system.  

The fewer the number of points a sigma value receives, the better it has performed in its 

classification, since the points signify errors.  This technique is sufficient for the single sigma 

optimization, but something more sophisticated must be used for multi-sigma training.  
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Specifically, a continuous error function must be derived whereby the goal of the conjugate 

gradient algorithm is to minimize the error function.  There are two main reasons why a 

continuous error criterion is used for the conjugate gradient algorithm rather than the point 

scoring system.  First, a continuous error function provides the jackknifing algorithm with a 

superior metric as to how well a set of sigma values performs.  With the point scoring system 

described for single sigma training, tied results would occur quite frequently, whereas with a 

continuous error function the occurrence of ties is much more of a remote possibility.  The 

second, more important reason for selecting the continuous error function is that the conjugate 

gradient algorithm uses the error function and its partial derivatives with respect to the sigma 

values in order to perform its optimization. 

 The continuous error criteria used for this project is defined in (2.24), where X is the 

input being classified, index i is the class to which X belongs, index k represents all of the other 

classes, and bn are the Bayesian confidences. 

 [ ] [ ]2 2( ) 1 ( ) ( )i i k
k i

e X b X b X
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= − +∑  (2.24) 

The Bayesian confidences, are defined in (2.25), where K is the number of classes and gi(X) is 

defined in (2.23). 
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Equation (2.24) intuitively seems reasonable because if X belongs to class i, then ideally the 

Bayesian confidence, bi, will be close to 1, and bk, k ≠ i, will be close to 0, which will produce a 

small error.  If bi decreases, an indication that the PNN did not believe X belonged to class i (an 

incorrect result), then the error produced will be larger. 

 The full derivation of (2.24) and its first and second partial derivatives with respect to the 

sigma values will not be presented here as they become quite tedious, and are not a core 

component to understanding the thesis as a whole.  Hence, for further information regarding the 

continuous error function and its derivatives that are used in conjunction with the conjugate 

gradient function, the reader is encouraged to refer to [Mast95]. 
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2.3.6 Kohonen Self-Organizing Feature Maps 

 Kohonen self-organizing feature maps (SOFMs) are neural networks that use 

unsupervised competitive learning algorithms.  These neural networks are referred to as topology-

preserving in that the neighbourhood relations of the data are preserved and structure is imposed 

upon the neurons in the network [Koho84].  This clustering of the data based on their relations 

allows for the discovery of the underlying structure of the data.  The use of SOFMs in this thesis 

is two-fold.  First, SOFMs are incorporated for objectively determining the clusters, or classes, of 

the signals used to verify the classification system.  The second use of the SOFMs in this thesis is 

for feature extraction purposes by creating a signature pattern for a given signal. 

 An SOFM is composed of just two layers of neurons:  an input layer and an output layer.  

The neurons in the output layer simply output the Euclidean distance (or the square of the 

Euclidean distance) between its weights and the input, as shown in (2.26), where n is the number 

of inputs to the network. 
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 The neuron that has the smallest output is declared the “winner”.  It is this “winner” that 

is allowed to have its weights updated, hence the competitive nature of the learning.  Training of 

the network is performed by modifying the weights of the “winner” neuron to make it more 

closely resemble the input as shown in Eq. (2.27), where w is the neuron weight, index k signifies 

the “winner” neuron, and index i is the input neuron. 
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 In addition, the surrounding neurons also have their weights updated during training, in 

order to encourage groupings and clusterings.  It is this group learning from which the SOFM 

attains its power.  The aim of the training is to have similar inputs activate neurons in the same 

area.  The function that dictates which nearby neurons also learn is referred to as the 

neighbourhood function.  There are many different neighbourhood functions that can be used, 

such as a constant, linearly decreasing, exponentially decreasing, or Mexican hat, which uses 

negative learning rates in an attempt to more distinctly isolate the groupings [EbDo90].  
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However, the neighbourhood function has little overall effect on the SOFM as long as enough 

training is permitted for the network to converge to a steady state [Fere95].  This thesis uses a 

constant neighbourhood function where all neurons within a designated distance, or radius, of the 

“winner” neuron have their weights updated at the same rate as the “winner” neuron.  A heuristic 

is used whereby the radius of the neighbourhood function decreases along with the learning rate 

as the training progresses.  Using this technique, the SOFM initially roughly defines the clusters 

when the radius and learning rate are high and then refines these clusters as training progresses 

and the radius and learning rate are decreased. 

 There are two common ways in which the neurons in the output layer can be organized.  

The first is simply in a one-dimensional array, and the second is in a two-dimensional matrix.  

The main difference between these layouts is how the neighbourhood function is defined, in that 

for the two-dimensional case, there are neighbouring neurons in multiple directions that may have 

their weights updated.  This thesis does not consider this type of SOFM as the signals used in this 

thesis are represented as one-dimensional vectors and do not require the extra complexity of the 

two-dimensional SOFM.  

 The primary manner in which SOFMs are used in this thesis is for feature extraction of 

signals.  The number of weights in the SOFM is typically less than the length of the signal that is 

used to train it.  Hence, when the SOFM is presented with segments from the signal, the weights 

of the SOFM have to adjust such that they represent the predominant characteristics that are 

present in the signal.  In other words, the weights are adjusted such that they represent the most 

prominent features in the signal.  When training is complete, the set of weights contained in the 

SOFM are commonly referred to as the codebook, as it contains a set of codes representative of 

the signal.  These weights, or codes, within the codebook are known as codewords and each 

codeword represents a specific feature that the SOFM found within the signals.  In addition to the 

reduction in the number of features representing the signal, the use of SOFMs provides some 

translational robustness in that signals which are mere translations of one another result in very 

similar codebooks. 

 The second way in which SOFMs are used for this thesis is to derive the different classes 

from the signals by exploiting the SOFM’s clustering abilities.  Clustering algorithms are not the 

main focus of this thesis but are utilized to form the training and testing sets for the purpose of 
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classification since the annotations of the signals used in this thesis were not provided.  A more 

thorough discussion of the use of SOFM for clustering can be found in Appendix B. 

2.4 Summary 

 This section of the thesis has provided the background on signal classification and has 

introduced the techniques used to perform feature extraction for the purpose of classification, 

namely, the variance fractal dimension trajectory and Kohonen self-organizing feature maps.  In 

addition, the probabilistic and complex domain neural networks have been presented as they are 

used to perform the signal classification based on these features. 
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CHAPTER 3 

SYSTEM DESIGN 

 One of the primary goals of the signal classification system is a maximal independence 

from the signal itself.  It is this requirement that drives much of the design of the architecture of 

the system and the components of the system. 

 There are three main design goals for the classification system developed for this thesis: 

the average correct classification rate must be greater than 90%; the time required to train the 

system must be less than a day; and the time required for the system to classify a given input 

signal must be shorter than the duration of the signal itself.  The correct classification rate of 90% 

was selected because this success rate indicates that the system is able to correctly classify inputs 

with a high degree of consistency.  Additionally, a rate of 90% was deemed to be a reasonable 

target given the time-constraints of the thesis. 

 The training time design constraint was selected in a less precise manner because there 

are no reasons in this thesis to dictate a definitive time limit for the training of the system.  Thus, 

the training time criterion was selected so as to ensure that the system was capable of training in a 

time frame in the realm of reasonability.  As a result, the constraint for the training time of the 

classification system was selected to be on the order of minutes or hours, and not days or months. 

 The final design criteria specifying that the execution of the classification system require 

less processing time than the duration of the signal itself was decided to ensure that the system 

could be applied to performing analysis on signals in real-time, should it be required. 

3.1 System Architecture 

 There are many challenges for a system flexible enough to work with a variety of 

different signals while requiring minimal changes to the system.  One of the first issues in such a 

system is simply reading the signal from its raw data representation since there is no universally 

adopted format with which to represent signals.  The first component of the system is 

preprocessing, as shown in Fig. 3.1, and the primary function of the component is to convert the 

signals from their original data representation to a proprietary format developed for this thesis.  

The application of a different signal to the system primarily requires only a minor addition to the 
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preprocessing stage to perform the necessary data conversion.  This common data representation 

provides the ground from which the rest of the system can stand upon. 

 The preprocessing stage is also responsible for performing any necessary filtering to 

reduce noise or other signal manipulations required before its analysis.  For the purpose of this 

thesis, no filtering is performed so as to further test the robustness of the system. 

 The task of designing the part of the system to perform the actual classification of signals 

seems daunting at first because of the abundance of signal processing techniques available.  The 

main idea behind classification is to group the signals into classes in which membership to a 

particular class is based solely upon a selected set of features.  The entire classification of the 

signals is dependent upon the careful selection of the features with which to uniquely identify 

each class of signals.  The difficulty is that there are an infinite number of features to choose, 

ranging from the average value of the samples, the variance of the samples, Fourier transform 

coefficients, wavelet coefficients [Mall98], or even the signal samples themselves.  For the 

signals examined in this thesis, simple statistical measures are insufficient to uniquely identify the 

signal classes and the ubiquitous Fourier transform is not applicable because of the non-

 

Fig. 3.1:  System block diagram. 
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stationarity of the signal and the non-linear processes that generate these signals.  It is naïve to 

simply use the samples from the signal to attempt to identify the classes because in most cases, 

this results in too many features for the classifier to base the classification upon.  Furthermore, the 

sample domain is very sensitive to changes in amplitude, frequency, and phase.  The windowed 

Fourier transform or wavelet transformation could however be utilized, but this thesis chooses to 

take advantage of the self-similarity of the signals and use a multifractal characterization with 

which to uniquely identify each class.  The particular technique used is to represent the signal as a 

trajectory of its variance fractal dimension through sliding windows across the signal.  The 

advantages of this transformation are two-fold.  First, this scale-invariant transformation 

emphasizes the underlying complexity of the signal, which provides the unique identification for 

each class.  Second, the transformation provides a normalizing effect since the theoretical limits 

of dimensionality of Euclidean one-dimensional signals is bound between one and two.  

Normalization is critical for the classification process, since all signals in a particular class must 

have similar values for the defined set of features.  Without normalization, signals in the same 

class could potentially take on any values for the set of features and it would be impossible to 

perform classification because the range of acceptable values would be infinite. 

 Without any further feature extraction, the classification can be performed based solely 

upon the signal’s variance fractal dimension trajectory (VFDT), and this is explored by this 

thesis.  The difficulty is that the VFDT is actually another signal.  Although it is much less 

sensitive than the original signal, it still suffers from translational problems.  Slightly shifted 

VFDTs should be interpreted to be of the same class, but when compared sample by sample, they 

would be quite different.  Feature extraction upon the VFDT itself could be performed using any 

of the techniques mentioned previously, but the goal is to not lose the normalization achieved or 

the features already extracted.  The technique proposed is the use of Kohonen self-organizing 

feature maps (SOFMs).  The goal is to extract the characteristic features of the VFDT and form a 

fingerprint of it.  The SOFM will form a codebook that represents the VFDT and slightly sample 

shifted signals would then have very similar codebooks.  Furthermore, this feature extraction can 

lead to a compression in the number of features used to represent the signal and hence, reduce the 

size of the classification problem 

 With the set of features established, the remaining task is to perform the actual 

classification of the signals based on these features.  The classification should be automated and 

not be specific to the actual signal being classified.  There are two main lines of thinking for 
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performing this task:  expert systems and machine learning.  Expert systems involve establishing 

customized predefined rules for separating the signals into classes based on their features; 

however, this is too rigid of a structure to be easily adaptable to different signals.  Furthermore, in 

most cases, it is not known how to arrive at concrete rules about how to perform this 

classification. 

 Machine learning, on the other hand, entails having the computer discover its own way of 

performing the classification based on some examples of signals belonging to each class.  Simply 

providing examples of each class requires much less work than specifically defining the rules 

needed to determine exactly how to classify the signals based on the selected features.  Utilizing 

machine learning allows the data to speak for itself.  The particular choice of machine learning 

used in this thesis is neural networks.  Neural networks are used in this thesis for their ability as 

function approximators, meaning that they can learn virtually any function.  Additionally, neural 

networks were chosen because of their generalization ability and robustness to noise, meaning 

that they perform well upon data they have never seen before and in situations involving 

abnormalities.  This flexibility is important because with any classification, there will be some 

variability in the acceptable values of features for a given class. 

 Even with the decision of utilizing neural networks to perform the classification, there are 

a variety of neural networks to choose from.  While the basic backpropagation neural network 

generally comes to mind, it is not the best neural network to choose for classification.  The 

probabilistic neural network (PNN), or Bayes classifier, trains faster and is asymptotically 

optimal as the number of training vectors increases. 

 One aspect to consider is that some signals are composed of multiple recordings, each 

capturing different information about the physical system.  In the case with two simultaneous 

signal recordings, the signal can be considered to consist of a single array of samples, each of 

which are represented as complex numbers, where the real part is a sample from one of the 

recordings and the imaginary part is a sample from the other recording.  Extensions to 

hypercomplex numbers, where three or more simultaneous recordings are available, are possible, 

but this thesis will restrict the number of signals to being complex. 

 Ignoring the additional information that the multiple recordings provide could restrict the 

performance of the classification.  The SOFMs can be modified to handle the values as complex 

numbers, as can the PNNs by appending the second signal to the first and creating a single real 
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valued signal; this technique is discussed in the corresponding component design sections.  As an 

alternative to the PNN, this thesis also proposes to use a complex domain neural network to 

perform the classification upon the signals and take advantage of this additional information as 

well as the strong coupling between the two values that compose each complex valued sample.  

This extension to the complex domain adds complexity, so the basic backpropagation training 

algorithm is used.  It is not known to what extent the inclusion of additional information with the 

use of complex domain neural networks will have on the classification, so comparisons will be 

made between probabilistic neural networks using one or both fish signal recordings and the 

complex domain neural networks using both fish signals simultaneously.  

3.2 Component Design 

 Even with the components selected for use in this thesis, many design decisions must be 

made about the components themselves, as there are a variety of options available and several 

parameters to set. 

3.2.1 Preprocessing 

 The function performed by this component is to perform data conversion from the raw 

data format of the signal to a proprietary format developed for this thesis.  For the most part, each 

type of signal has its own unique file format, so the data conversion involves parsing any relevant 

information from the file header and translating the signal samples from their original ASCII, 

binary, or other encoding schemes.  Further complicating matters, some raw data files contain 

multiple signals, which must be separated in order to facilitate the function of the other 

components.  Thus, for a given raw data file containing n signals, the output of the preprocessing 

stage is n files, each containing one of the signals from the original data file in the proprietary 

format used in this thesis. 

 The format chosen for this thesis is simple but contains all the information needed to 

perform the analysis upon it.  The processed files representing the signals have some basic header 

information containing the sampling rate of the signal and the number of samples in the file.  This 

header is followed by the actual samples of the signal.  All values are written in uncompressed 

binary, little endian format, with floating and double point values conforming to the IEEE 154 

standard.  This file format allows for flexibility in the data type of the sample points, since it is 
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inefficient to use a lowest common denominator and represent 4-bit integers as 64-bit double 

values.  The consequence is that a matching reader object is required for each data type. 

 For the signals used in this thesis, noise filtering is not performed because little is known 

about the fish trajectory signal and the absence of filtering provides an opportunity to test the 

resilience of the classification process to noise. 

 Error correction is however, necessary for the fish trajectory signals and is performed in 

this component.  For these signals, tracking errors occasionally occur and result in missing 

samples.  These missing samples are corrected by using first order, or linear, interpolation and 

zeroth order, or nearest neighbour, extrapolation.  Linear interpolation is used for its simplicity 

and because the tracking errors generally do not occur in large numbers of consecutive samples.  

Nearest neighbour extrapolation is performed in order to ensure that the extrapolated samples 

remain in the valid range of values.  In addition, the end points are not crucial since they have 

little effect on the overall signal and it is sufficient to assume that the fish remains stationary at 

those points. 

3.2.2 Variance Fractal Dimension Trajectory 

 While the basic VFDT algorithm remains consistent with that shown in Chapter 2, some 

modifications are made to improve the robustness of the algorithm.  In its original form, the 

VFDT algorithm occasionally produces some undesired artifacts.  Two such artifacts are 

considered here.  Given a particular window, if the variance of the difference between samples is 

exactly zero, which occurs when the samples from the signal lie on a straight line, then the 

algorithm fails when forming the log-log plots, since the log of zero is undefined.  One option 

would be to use a threshold and set any value below the threshold to some predefined small value.  

However, should the signal exhibit a straight line, then the variance at each scale would be 

exactly zero, meaning that the threshold value would be enforced for each point in the log-log 

plot, yielding a horizontal line in the log-log plot.  The slope of such a line is zero, which gives a 

dimension of two, which is not theoretically correct.  Straight lines have fractal dimensions of 

one, thus the modification made is to simply set the dimension to one should a variance of zero be 

produced for any of the points in the log-log plot.  This situation occurs almost exclusively in 

fabricated cases and is very rare in real signals since signals invariably have noise making the 

occurrence of perfectly straight lines nearly impossible.  In fact, this situation does not occur in 

any of the fish trajectory signals used in this thesis. 
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 The second modification to the VFDT algorithm is slightly more involved.  It was 

observed that in some instances, the log-log plots seemed to exhibit some peculiar behaviour 

whereby the first few points clearly formed a straight line, and exhibited power law behaviour, 

but the last point was significantly lower than what would be expected if the line were to be 

extended to the last point.  This phenomenon is demonstrated in the top left plot in Fig. 3.2, where 

the individual points are plotted along with the associated linear regression.  A typical log-log 

plot exhibiting power law behaviour is shown in the top right of the same figure.  The irregularity 

shown in the left plot is contrary to what is expected because the variance of the difference 

between samples close together should be lower than the variance between samples farther apart, 

since closer points are more correlated than farther points.  This is generally the case unless the 

signal is periodic with a period similar to the distance between samples used in the VFDT 

algorithm at the largest scale, in which case, the variance between samples would be 

unexpectedly small.  Computing the frequency spectrum of the window, as shown below the log-

log plots, corroborates this claim in that the frequency corresponding to the sampling in the 

largest scale, indicated by the triangle along the frequency axis, has a significantly larger presence 

than in cases where the log-log plots exhibit power law behaviour.  The resulting artifact is that 

the slope of the linear regression is smaller than anticipated, which causes an increase in the 

 

Fig. 3.2:  VFDT log-log plots and frequency spectrum plots. 
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fractal dimension. 

 To remove these artifacts, the last point is discarded in log-log plots where the points are 

progressively increasing in value, but the last point is lower than its predecessor.  By ignoring the 

last point in these instances, the linear regression can then capture the power law behaviour 

exhibited by the remaining points.  Periodicities corresponding to the last point is not the only 

problem, since periodicities affecting the separation corresponding to the second last point would 

have a similar affect.  In such a scenario, both the second last point and the last point would be 

lower than expected because the frequency corresponding to the last point is merely a harmonic 

of the second.  More sophisticated algorithms could be used to eliminate the outliers in general, 

but are not explored in this thesis since it was observed that artifacts caused by these periodic 

situations had a low rate of occurrence. 

 Aside from the design modifications to the VFDT component itself, there are also design 

decisions to be made concerning the two free parameters involved in the algorithm.  The choice 

of the window size is very important and unfortunately, the choice is specific to each type of 

signal.  Generally, the window size is chosen to match the stationarity of the signal; however, 

since such knowledge does not exist for the fish trajectory signals used in this thesis, the window 

is experimentally determined.  The window is chosen such that in general, the log-log plots obey 

a power law relation.  The second parameter is the displacement of the sliding windows.  The 

amount that the sliding window is shifted for each calculation of a variance fractal dimension 

determines the resolution of the VFDT.  Unlike the window size, the experimental determination 

of the window displacement is more subjective in nature.  Furthermore, these two parameters 

affect the size of the classification problem in that the value of the window size and displacement 

control the number of features to be used for classification.  The actual choice of the window size 

and displacement used during the verification of the classification system is discussed in the 

experimental results and discussion in Chapter 6. 

3.2.3 Kohonen Self-Organizing Feature Map 

 For the purpose of feature extraction and further reduction of the size of the classification 

problem, SOFMs are used to produce a fingerprint of the VFDT by picking out the most common 

characteristics from the VFDT.  The fingerprint produced is simply the codebook of the SOFM 

trained using samples from the VFDT signal.  For a given codeword length, the SOFM is trained 

by providing it with intervals of the VFDT with the same length as the codeword.  The SOFM 
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then determines the most representative codewords from the VFDT and arranges them in a 

topological-preserving manner.  The classification is then based upon these set of codewords.  

Because the chosen intervals of the VFDT are allowed to be shifted anywhere along the signal, 

the codebooks should be more robust to translational shifting than the VFDT signals.  While the 

codeword length is important because it determines the size of the features extracted from the 

VFDT, the number of codewords is also an important because it determines the number of 

features selected.  If the number of codewords is too small, then the SOFM cannot capture all the 

important features.  Conversely, if the number of codewords is too large, then the size of the 

classification problem is larger than necessary and the SOFM may extract insignificant features.  

These parameters are determined experimentally and their choices specific to the fish trajectory 

signals are discussed in Chapter 6. 

 Another architectural design decision is the organization of the neurons in the SOFM.  

The most common organization represents the neurons in a two-dimensional map; however, since 

the signals used in this thesis are one-dimensional in the Euclidean sense, and to reduce the 

complexity of the SOFMs, the neurons are organized one after another in a one-dimensional 

array. 

 As it is currently presented, the SOFM is only able to form a codebook based upon a 

single real valued signal.  In order to extend the SOFM such that it can perform feature extraction 

of two signals simultaneously in cases where the classification is dependent upon two separate, 

but correlated signals, each signal sample can be represented as a complex number, with the real 

part representing a sample in one signal, and the imaginary part representing a sample in the other 

signal.  By replacing the real domain Euclidean distance between the neuron weight and the input 

vector in Eq. (2.26) with the more general complex domain version, and performing some 

straightforward manipulations, Eq. (3.1) can be obtained. 
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This result demonstrates that using an SOFM that accepts complex valued inputs is equivalent to 

a real domain SOFM where the real and imaginary parts of the input are concatenated to form a 

single real valued array.  Thus, no architectural changes are required to have the SOFM perform 

feature extraction upon multiple simultaneous signals. 

 The input to the SOFM are intervals of VFDT signals, consequently, the values are, for 

the most part, normalized between one and two, and hence the weights of the SOFM need only be 

between one and two.  Since no assumptions are made about the signal or its VFDT, the weights 

are initialized by simply using random numbers uniformly distributed between one and two. 

 The training of these initially random weights involves a number of design decisions.  

The epoch size is set to one, meaning that the weights are updated after each presentation of a 

training vector as that is the standard for this neural network.  Since no a priori knowledge about 

the VFDT is assumed, the training vectors are randomly selected intervals from a single VFDT 

signal.  Because the training is unsupervised, there is no right or wrong that can be assessed, so 

the number of training vectors presented to the SOFM is fixed and simply such that the SOFM 

converges to a steady state.  Again, this value is determined experimentally, but in general, each 

training vector should be presented at least a couple of times during training.  Another decision to 

be made is the neighbourhood function to use for training.  The neighbourhood function is not 

that important as its primary effect is a slight alteration of the speed of convergence of the 

network.  As such, the simplest function, the constant function, is used where all the neurons 

within a particular distance, or radius, of the “winner” neuron learns at the same level.  The 

choice of the radius of the neighbourhood function and learning rate are however, quite 

important.  Initially these parameters are set to large values in order to establish the general 

groupings in the map and are then decreased as the training proceeds in order to refine the 

clustering.  The question arises as to how to decrease these parameters.  Two disparate options are 

exponential and linear reductions of the parameter values.  Through experimentation, it was 

discovered that exponential reduction does not produce good results because the parameters are 

reduced too quickly and the general clustering is not properly established before the parameters 

decrease to levels where refinement dominates.  As a result, maps are produced where the clusters 

and extracted features are poorly defined.  Linear reduction causes the SOFMs to converge 

quicker and produce better clustered codebooks representative of the training vectors.  The initial 

radius of the neighbourhood function is set to the size of the codebook and the learning rate is set 
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to 0.9.  Both parameters and they are reduced in a linear fashion until the radius is 0, meaning that 

no neighbouring neurons are affected, and the learning rate is 0.1. 

3.2.4 Probabilistic Neural Network 

 Probabilistic neural networks (PNNs) are utilized in this thesis for their excellent 

classification ability.  The majority of the design decisions in regard to the PNN relate to the 

smoothing parameter, or sigma value, used in the Gaussian functions in the pattern layer of the 

neural network.  The first decision to be made is whether a single sigma value is to be used for 

each feature.  A different sigma may be desired for different features if the features have different 

normalizations or importance.  For this thesis, the features provided to the PNN are either a 

VFDT signal or a SOFM codebook created from a VFDT signal, thus there are no reasons to have 

any preference or special consideration for any particular feature, as they all represent fractal 

dimensions.  However, when the PNN is used to classify complex valued signals consisting of 

samples from two separate recordings, things are slightly different.  When dealing with complex 

valued inputs with the PNN, a transformation is performed whereby a single input to the PNN is 

formed by the concatenation of the two recordings, which is identical to how this situation is 

handled with the SOFM in Eq. (3.1).  Such a transformation is valid to use in conjunction with 

the PNN because the pattern layer of the PNN simply uses a Euclidean distance measure, as was 

used in the SOFM.  Since in this configuration, the input to the PNN is a combination of the 

features from multiple recordings, it may be desired to use different sigma values for each 

recording, but due to time constraints, this option is not explored in this thesis. 

 Multiple sigmas may be also desirable when signal classes have very different spreads, 

meaning that the signals in one class may have very little variability, or spread, whereas signals in 

another class may have a high level of variability.  In such instances, larger sigmas are desired for 

classes with large spreads and smaller sigmas for classes with small spreads.  This thesis allows 

the option of choosing whether or not different sigma values for classes are used.  The 

consequence of using multiple sigma values is an increase in the complexity of the training 

algorithm and the training time. 

 Training a single sigma PNN entails deciding an appropriate sigma value. However, the 

problem space is infinite and the problem function is not known, so determining the globally 

optimal value for the sigma parameter is not guaranteed.  Although the problem landscape is 

unknown, it is known that there is correlation between points in the landscape in that the 
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performance of the PNN as a function of the sigma value is a continuous function, and in most 

cases the function changes very slowly and there are few local minima, as shown in Fig. 2.6.  

Furthermore, the sigma value has a multiplicative effect with respect to the Gaussian function 

used to estimate the probability density functions.  By taking advantage of this information, a 

simple training algorithm can be used to train a single sigma PNN by attempting to bound the 

optimal sigma value.  A global line minimization is first performed whereby a variety of sigma 

values between some initial bounds are tested.  Because of the multiplicative effect of the sigma 

value, a logarithmic space is used to select the sigma values between the initial bounds in order to 

provide for a more efficient search.  Jackknifing is used to evaluate the performance of the sigma 

value because it is able to provide a quick estimate of the performance of the PNN for a given 

sigma value based entirely upon the training set.  After this approximate bounding, the optimal 

value is refined using a sectioning algorithm.  This algorithm reduces the bounds of the sigma 

value by cutting it in half in a geometric sense in each iteration until the optimal sigma value is 

found or the improvements become insignificant.  Because of the way the PNN operates, the 

bounding of the optimal value of sigma is on the number of inputs to the neural network.  It has 

been experimentally determined that the initial bounds of 10-6 and 10-1, both multiplied by the 

number of inputs to the network, usually bounds the optimal value.  Furthermore, 15 initial sigma 

values used in the global line minimization also seems to provide an adequate initial bounding. 

 When training the multi-sigma PNN created for this thesis, the goal is to derive an 

acceptable sigma value for each of the different classes.  The multi-sigma training algorithm is 

slightly more complex than the single sigma training algorithm because it must optimize an 

unknown function of n variables, where n is the number of classes, whereas the single sigma 

algorithm only has to optimize a function of one variable.   

 The actual multivariate function that must be optimized during multi-sigma training is the 

continuous error function, (2.24), described in Chapter 2.  There are several different techniques 

that can potentially be used to optimize a multivariate function.  The three most popular 

techniques are conjugate gradient methods, quasi-Newton methods, and Newton’s method.  The 

quasi-Newton and Newton’s methods were not used in this project because of their excessive 

requirements.  The problem with quasi-Newton methods is that an approximation of the Hessian 

matrix must be calculated and stored.  In problems involving neural networks, the amount of 

storage required to hold the Hessian matrix can become quite large.  Newton’s method also 

requires large amounts of memory because it must store all of the mixed partials of the 
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continuous error function. Additionally, computing all of the mixed partials for Newton’s method 

can be a very time consuming process.  Conjugate gradient methods, on the other hand, do not 

require the large storage requirements nor the large amounts of processing of quasi-Newton and 

Newton’s method, yet, at the same time, the performance of conjugate gradient methods are 

almost as good as the other two methods.  As a result, a conjugate gradient method is used to 

perform the multi-sigma optimization.   

 The first decision to be made with respect to the conjugate gradient algorithm is the 

selection of the initial sigma values.  One possibility is to simply select random initial sigma 

values and perform the optimization from there.  This is a quick and simplistic approach, but it 

was decided that a slightly better technique could be utilized.  A logical method to obtain initial 

sigma values is to execute the single sigma training algorithm and use its result as the starting 

point for each of the sigmas in the multi-sigma set.  The single sigma training algorithm provides 

an estimate of the average amount of variability in the classes.  Often the amount of variability 

contained within each class is fairly similar, thus the multiple sigma values chosen will be very 

close to the original single sigma.  In other problems, the amount of variability in each class is 

more pronounced, meaning that the multiple sigma values will vary more greatly from the sigma 

value chosen with single sigma optimization.  However, in either scenario, the single sigma value 

chosen provides a middle ground starting point that can be increased for some classes and 

decreased for other classes to find an appropriate set of sigma values. 

 At the heart of the conjugate gradient method is the line minimization algorithm.  Thus, 

the next decision to be made is regarding which line minimization algorithm to use.  The line 

minimization algorithm used is merely a minor extension to the algorithm used with the single 

sigma optimization.  More specifically, the line minimization algorithm first performs the same 

global line minimization, used in the single sigma case, to bound the minimum, and then refines 

the minimum in its second step, using the well-known Brent’s line minimization.  This line 

minimization technique is a good choice for the conjugate gradient algorithm as it provides a 

reasonable minimum very quickly.  Since the conjugate gradient algorithm performs the line 

minimization step numerous times, it is imperative that it be as fast as possible. 

3.2.5 Complex Domain Neural Network 

 This thesis explores the use of neural networks that are designed to directly handle 

complex valued inputs because their training is typically faster and their generalization ability is 
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usually superior to their real-valued counterparts.  This particular component requires a number 

of design decisions, including some architectural in nature and some pertaining to the training of 

the network. 

 Architecturally, the main design decisions concern the number of neurons to use in the 

network.  The number of input neurons is fixed by the number of features used for classification 

and is not a parameter that is specific to the complex domain neural network itself.  A single 

output neuron is used for each class since it is an unnecessary burden to place upon the network 

to encode the class in a binary fashion or some other encoding.  This one-hot encoding is simpler 

in that the network only has to activate one neuron and deactivate the others.  Since each output 

neuron is used as a binary indication of the inclusion or exclusion of an input to a particular class, 

having a complex output for each neuron unnecessarily adds complexity.  The network can be 

simplified by ignoring the imaginary part of the output and training the network to produce only 

real output values so that the classification decision can be based upon real output values.  The 

network is trained to have the output neuron corresponding to the input vector’s class produce a 

value of 0.9 and with the rest of the output neurons producing -0.9.  The classification decision 

for a given input is then based upon which output neuron produces the highest activation. 

 The network is restricted to a single hidden layer since additional layers would 

substantially increase the complexity of the network as well as the training time, while not 

significantly adding to the network’s ability because a three-layer neural network is sufficient in 

virtually all situations.  The number of neurons to place in this layer has a dramatic effect on the 

network’s ability to perform the desired operation and the speed at which it executes and trains.  

The heuristic which specifies that the number of hidden neurons should be set to the geometric 

mean of the number of input and output neurons is used in this thesis.  Through experimentation, 

it was discovered that this heuristic provides a good balance in that there are enough neurons to 

learn the desired function without simply memorizing the inputs and the network is restrained to a 

reasonable size so that the training and execution time of the network is acceptable. 

 Backpropagation was chosen as the training algorithm for the complex domain neural 

network in order to keep the complexity of the network to a reasonable level for this thesis.  The 

network is trained using an epoch size equal to the size of the training set so as reduce the 

oscillations of the values of the weights during training and thus speed up the convergence of the 

network.  A second modification to the basic backpropagation algorithm used is the inclusion of a 
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momentum factor, whereby a fraction of the previous correction value for the weights is added to 

the present correction value.  Again, the purpose of this modification is to reduce the oscillations 

that are typical when using backpropagation.  A learning rate of 0.5 and a momentum coefficient 

of 0.9 are used in this thesis, as it was experimentally found that these values provided a balance 

between readily responding to the error derivatives while avoiding too much compensation and 

resulting in oscillations.  The training of the network is generally stopped when the mean square 

error of the network is below a desired value.  However, a maximum number of epochs is also 

imposed so that the training completes in cases where the network refuses to converge.  As with 

the learning rate and momentum factors, these values were experimentally determined and a 

mean square error of 10-5 is sought and a maximum of 105 epochs is enforced. 

3.3 Summary 

 This section of the thesis has outlined the major design decisions made in developing a 

classification system able to handle non-stationary, self-similar, stochastic signals arising from 

non-linear processes.  What remains is a discussion of the actual implementation of the system 

along with the method in which the system was tested and verified. 
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CHAPTER 4 

SYSTEM IMPLEMENTATION 

4.1 System 

 As this thesis involves the implementation of a number of different algorithms and 

techniques, a purely software approach is adopted for rapid development, ease of interfacing with 

the existing data, flexibility, and cost.  The chosen programming language for use in this thesis is 

Java because of its object-orientated nature, platform independence, well-documented application 

programming interface, cost, and its built-in documentation abilities through Javadoc.  The main 

drawback of using Java is inferior performance when compared to programs written in native 

compiled languages such as C or C++.  However, compiling the Java bytecode to native language 

code significantly narrows the performance gap.  The native compiler used in this thesis is 

Excelsior JET2, which reduces the execution time of the programs used in this thesis by 30-50% 

over simply running the Java bytecode inside a Java virtual machine. 

 Because of the uniqueness and sophistication of the techniques used in this thesis, 

toolboxes and packages are insufficient for the implementation of this thesis.  Consequently, the 

entire classification system is built specifically for this thesis, which also provides for complete 

control and customization over every aspect of the system. 

 The primary goal in implementing the classification system is flexibility.  The system 

must be implemented in such a way that only minimal changes are necessary in order to use the 

system with different types of signals.  This relative independence of the system from the specific 

signal being analyzed is achieved through the object oriented implementation of the 

preprocessing component as well as the common format used to represent signals in this thesis.  

The system must also be easily reconfigurable so that different techniques can be used for feature 

extraction and classification.  This reconfigurability is obtained by implementing independent and 

decoupled components. 

                                                   

2 Obtained from http://www.excelsior-usa.com/ last checked March 6, 2003 
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4.2 Component 

 The implementation of the system is divided up into a number of components, the details 

of which are discussed in this section.  The component responsible for the preprocessing of the 

signals is presented followed by the feature extraction by the variance fractal dimension trajectory 

and the Kohonen self-organizing feature maps.  The components for the neural network 

classifiers are then described.  Finally, components related to the construction of input vectors for 

classification and the component responsible for actually performing the classification are 

detailed. 

4.2.1 Preprocessing 

 The preprocessing component is implemented in such a way to allow for flexibility in the 

specific signal used in the classification system.  A common preprocessing interface is used for 

all Java classes performing the preprocessing of signals, as shown in the Unified Modeling 

Language (UML) class diagram [Doug99] of the preprocessing component in Fig. 4.1.  UML 

class diagrams depict the hierarchical structure and high level interactions between classes in an 

object-oriented program.  The FishPreprocessor class performs the preprocessing logic for the 

fish trajectory signals.  Adapting the system to operate with a different signal requires that a 

corresponding preprocessor class be created.  These preprocessing classes perform the entire 

 

Fig. 4.1:  Preprocessing UML class diagram. 

 

Fig. 4.2:  SignalReader UML class diagram. 
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functionality of the preprocessing component discussed in the system design in Chapter 3.  

Because of the flexibility in the data type of the signal samples in the proprietary format used in 

this thesis, special reader classes are needed to translate the signals stored in files into Java arrays, 

as shown in the UML class diagram in Fig. 4.2.  The SignalReader class is an abstract class, as 

indicated by the italics text, because it contains several assistance methods for its subclasses.  An 

abstract class cannot be instantiated and it is used for this class because it only makes sense to 

create objects from specialized subclasses of this class that reads a particular type of signal.   For 

the fish trajectory signals, the FishReader class performs the necessary conversion from the 

processed file to a Java array.  The VFDTReader class provides the analogous conversion for 

VFDT signals stored in a file.  This object oriented design using common interfaces and abstract 

super classes allows for simplification of the components in the rest of the system, since 

alterations in the type of signal used in the system requires only in supplying the other 

components with different Preprocessor and SignalReader objects. 

4.2.2 Variance Fractal Dimension Trajectory 

 The implementation of the variance fractal dimension trajectory (VFDT) component is 

primarily a straightforward implementation of the VFDT algorithm presented in the background 

in Chapter 2 and the modifications discussed in Chapter 3.  The majority of the logic is contained 

within the VFDT class shown in Fig. 4.3.  The VFDT class contains a method that accepts an 

array, a window size, and window displacement and returns the corresponding variance fractal 

dimension trajectory.  The code for performing the linear regression used in conjunction with the 

log-log plots is separated from the VFDT class and it provides the equation of the linear 

regression when provided with the Cartesian co-ordinates of the points which to perform the 

 

Fig. 4.3:  Variance fractal dimension trajectory UML class diagram. 
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regression upon.  The VFDTDriver abstract class connects the preprocessing and VFDT 

components by utilizing a Preprocessor object to perform the preprocessing upon the raw data 

files and to create files that can be read into an array by a SignalReader object.  This array can 

then be supplied to the VFDT class along with a desired window size and displacement in order 

to obtain the VFDT.  The FileUtility class is a multipurpose class used throughout this thesis to 

assist in writing to and reading from files.  The VFDTDriver uses this class to write the VFDT to 

a file in the same proprietary format used by the preprocessing component, which can be later 

read by a VFDTReader object. 

4.2.3 Kohonen Self-Organizing Feature Map 

 The Kohonen self-organizing feature map (SOFM) implementation is constrained to 

organizing its output neurons in a one dimensional configuration, as justified in the design of the 

SOFM component.  Logically, the network is composed of a number of neurons, thus the 

functionality for the individual neurons are separated from the SOFM itself and is represented by 

the KohonenNeuron class depicted in Fig. 4.4.  The Kohonen1DSOFM class acts as the interface 

for the SOFM, as it will construct the network out of a number of KohonenNeurons when 

provided with the desired number of input and output neurons. 

 The Kohonen1DSOFM class also contains methods for training the network.  The SOFM 

training algorithm requires a number of different parameters, some of which are required 

parameters, such as the number of epochs, the initial learning rate, and the initial radius of the 

neighbourhood function.  In order to limit the number of required parameters to a reasonable 

level, some of the parameters are simply given predefined values, such as the minimum learning 

 

Fig. 4.4:  Kohonen self-organizing feature map UML class diagram. 
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rate and the minimum neighbourhood radius.  However, for flexibility purposes, these predefined 

values are public members to the class and can be overwritten by the calling class.  To facilitate 

the functionality of the other components to the system, the Kohonen1DSOFM class allows for 

the weights of the network, or the SOFM codebook, to be retrieved.  Additionally, the network is 

able to utilize the FileUtility class to write its codebook to a file and also restore the network from 

a file containing a codebook. 

4.2.4 Probabilistic Neural Network 

 The implementation of the probabilistic neural network (PNN) component is the most 

complicated out of all the components because of the flexibility and extensibility it provides, 

which consequently involves a large number of classes.  The structure of the classes in the PNN 

implementation is shown in Fig. 4.5.  The PNN class acts as the class to be used by other classes 

when this particular neural network is desired.  This class contains all the functionality of the 

neural network, but distributes most of the work to other classes.  The behaviour of the pattern 

and summation layers are provided by classes which use the PatternSummationLayers interface, 

such as the EuclideanGaussianPSL class, which utilizes Euclidean distances in the pattern layer 

and Gaussian weighting functions in the summation layer.  The PNN class contains a single 

 

Fig. 4.5:  Probabilistic neural network UML class diagram. 
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instance of a class with the PatternSummationLayer interface.  The purpose of adding this extra 

complexity is that it allows for either the operation of the pattern or summation layers to be 

modified.  By creating a class that uses the PatternSummationLayers interface and employs a 

different measure in the pattern layer or a different weighting function to estimate the probability 

distribution functions in the summation layer, the operation of the PNN can easily be modified to 

adopt these new pattern and summation layers by replacing the declaration of the 

EuclideanGaussianPSL class in the PNN class with the desired class.  The PNN class itself 

contains the logic for interpreting the output of the summation layer and performing the actual 

classification of the inputs.  The PNNDriver abstract class is not part of the network itself; rather, 

it creates an instance of the PNN class, trains it upon a given training set, evaluates the network 

upon a provided testing set, and reports the results to an external file.  This class is used by the 

actual executable program, which is discussed later in this chapter, in order to reduce its 

complexity. 

 The training of the PNN is rather involved and is further complicated by the fact that two 

different training algorithms are explored in this thesis.  The implications of these facts are that to 

reduce the overall complexity of the PNN class, the logic for performing the training algorithms 

is to be delegated to classes dedicated to the training of the network.  All training algorithms are 

subclasses of the abstract SigmaOptimization class, so that they can be readily swapped inside the 

PNN class without any major modifications to the PNN class itself.  The two training algorithms 

implemented are the sectioning algorithm for training of single sigma PNNs, represented by the 

SectioningSO class, and the conjugate gradient algorithm for training of multi-sigma PNNs, 

represented by the ConjGradSO.  In both cases, the training algorithm requires access to the 

network itself so that the trained sigma value can be applied to the network, hence the 

bidirectional association between the PNN and SigmaOptimization classes. 

 The PNNEvaluator abstract class provides the framework for classes that can be used by 

the SigmaOptimization subclasses for gauging the quality of sigma values of the PNN.  This 

relationship between the SigmaOptimization and PNNEvaluator classes is shown as a 

dependency on the UML class diagram.  For the evaluator to calculate the performance of a 

particular set of sigma values, it requires access to the network itself so that the network can be 

executed upon test inputs.  Hence, the PNNEvaluator and PNN classes are governed by an 

associative relationship.  For this thesis, the method of evaluating the sigma values is Jackknifing.  

This evaluator class is directly used by the SectioningSO class; however, the ConjGradSO class 
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utilizes a subclass of the Jackknifing class, the CtsErrorJackknifing class.  This more specific 

evaluator is required since the ConjGradSO class depends on the use of error gradients, or 

derivatives, in its optimization of the sigma values, and the discretized Jackknifing evaluation is 

insufficient. 

 The classes involved in the sectioning training algorithm are detailed in Fig. 4.6.  As 

previously discussed, the SectioningSO class utilizes the Jackknifing class to evaluate the 

performance of a given sigma value.  The sectioning algorithm itself utilizes two separate classes.  

The purpose of this separation is two-fold.  First, this separation is based on functionality, which 

allows for substitutions of either of the components in cases where improvements to the basic 

algorithm are desired.  Second, the separation facilitates reuse of the classes.  The GlobalLineMin 

class performs the initial search through the problem space in an attempt to acquire a rough bound 

of the optimal sigma value.  This rough bound is then provided to a subclass of the 

SectionLineMin class, for refinement.  The SectionLineMin class performs the sectioning 

algorithm whereby the interval thought to contain the optimal sigma value is progressively 

reduced.  The particular means in which the interval is reduced is provided by the 

SectionLineMin class’s subclasses.  The BisectionLineMin class dictates that the interval be 

reduced by a factor of two in each iteration by simply calling the SectionLineMin’s refinement 

method with a parameter of two.  The choice of successively reducing the interval by two is 

reasonable, but it should be noted that the interval can be reduced in any number of ways, some 

 

Fig. 4.6:  Sectioning sigma optimization UML class diagram. 
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of which may take advantage of the nature of the problem space.  One such alternative to 

bisecting is utilizing the golden mean, 2 / (1 + √5), for reducing the intervals, as suggested in 

[Mast95].  This modification was explored, but it did not produce any noticeable difference. 

 The conjugate gradient training component of the PNN is shown in more detail in Fig. 

4.7.  The ConjGradSO class utilizes the SectioningSO class in order to initiate the process by 

optimizing for a single sigma PNN.  The sigma values are then allowed to take on different values 

and are optimized using a standard conjugate gradient algorithm, which is performed by the 

ConjGradSO class.  The GlobalLineMin class is reused here by the ConjGradSO class.  The 

BrentLineMin class, which performs Brent’s line minimization is also utilized by the 

ConjGradSO class in executing the conjugate gradient algorithm  The error derivates used in the 

algorithm are provided by the CtsErrorJackknifing evaluator class, as previously mentioned. 

4.2.5 Complex Domain Neural Network 

 The second classifier neural network used in this thesis is the complex domain neural 

network.  Complex numbers are not built into the Java language, so a ComplexNumber class is 

implemented to represent complex numbers, using Cartesian co-ordinates, and perform basic 

operations with complex numbers.  This class contains a number of methods for complex number 

arithmetic as well as operations mixing real and complex numbers in order to facilitate the 

implementation of the complex domain neural network.  These functions include addition, 

subtraction, multiplication, division, and polar co-ordinate conversions. 

 The network itself is represented by the CNN class shown in Fig. 4.8, which is composed 

of any number of neurons operating upon complex inputs.  These neurons are implemented as the 

ComplexNeuron class.  Both classes utilize the ComplexNumber class extensively.  The 

 

Fig. 4.7:  Conjugate gradient sigma optimization UML class diagram. 
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backpropagation algorithm and the computation of the error derivatives the algorithm utilizes are 

simply implemented inside the CNN class. 

 The CNNDriver abstract class is analogous to the PNNDriver used in conjunction with 

the probabilistic neural network.  This class is utilized to simplify the interactions with the 

complex domain neural network when verifying the operation of the classification system. 

4.2.6 Input Vector Creation 

 The classifying neural networks, the probabilistic and complex domain neural networks, 

require input vectors consisting of the set of features to base the classification upon.  For this 

thesis, the features to be extracted from the signal arise from a multifractal characterization by 

computing its variance fractal dimension trajectory.  Additionally, further feature extraction may 

be performed upon the VFDT signal via SOFMs.  To facilitate this feature extraction and 

development of input vectors for the training and testing sets used with the classifying neural 

networks, a CreateInputVectors class is implemented, as shown in Fig. 4.9. 

 This class requires that a file be provided that lists the signals and the signal segments 

from which to create the input vectors  Each signal may be divided into a number of smaller 

segments, in which the signal segments are classified rather than the entire signal.  This situation 

arises when the behaviour of the signal changes during its duration and contains a number of 

segments, which belong to different classes.  The CreateInputVectors class is able to handle this 

situation as well as cases where the entire signal is classified as a whole.  In addition to the 

specification of the signal segments, the file must also identify the known class of each of the 

 

Fig. 4.8:  Complex domain neural network UML class diagram. 
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signal segments, since the CreateInputVectors class is used to create training and testing sets, 

which require that the classes of each of the signals be known ahead of time. 

 The CreateInputVectors class also requires that the VFDT signals be computed ahead of 

time and stored in files.  Once the signals to create the input vectors from are identified, their 

VFDTs are read from the files by using the VFDTReader class shown in the figure.  Based on the 

specifications in the file, the portions of the VFDTs corresponding to the signal segments are 

extracted to form the set of features for the signal segments.  The set of input vectors for 

classification can be formed directly from these VFDT segments since the file also specifies the 

classes of each of the signal segments and the input vectors can be grouped according to their 

designated class.  The CreateInputVectors class also contains a method to use a Kohonen self-

organizing feature map to perform feature extraction upon these VFDT segments, as shown by 

the class’s association with the Kohonen1DSOFM class.  The codebooks produced from the 

SOFMs are then used as the input vectors to the classifiers.  In either case, the CreateInputVectors 

class returns a set of input vectors corresponding to the signal segments specified in the file and 

are grouped according to the class specifications in the file. 

 Additionally, this class is able to produce complex valued input vectors, each of which 

are derived from two correlated signal segments.  The two signals are typically simultaneous 

recordings, which capture different information about its source.  The extraction of VFDT 

features from these signals is straightforward, as the VFDTs for these signals are contained in 

separate files and can be independently extracted.  In the case where the input vectors are directly 

obtained from the VFDT segments, complex numbers can be formed by using the VFDT segment 

corresponding to one of the signal segments as the real part and the VFDT segment 

corresponding to the other signal segment as the imaginary part.  When SOFMs are used to 

 

Fig. 4.9:  Create input vectors UML class diagram. 
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extract features from the VFDT segments, the two VFDT segments corresponding to the two 

signal segments are used as the training data for the SOFM.  The input vectors to the SOFM 

consist of appended portions of the VFDT segments, as explained in the design of the SOFM 

component in Chapter 3.  This ability of the CreateInputVectors class to produce complex valued 

input vectors requires the use of the ComplexNumber class, as shown in Fig. 4.9. 

4.2.7 Classifier Driver 

 The classifier driver programs are the only executable programs in the system and they 

connect all the components together in order to form the various configurations of the 

classification system.  There are separate classifier driver programs for the configurations of the 

system which use the probabilistic and complex domain neural networks, but they are identical 

except that they use different classifier neural networks.  Since the interface for the two networks 

are very similar, their corresponding classifier driver programs differ only by a few lines. 

 The classifier driver for the PNN is shown in Fig. 4.10.  The PNNClassifer driver is an 

active class, indicated by the bold lines, meaning that it is executable.  This class is responsible 

for performing the preprocessing of the signals and computation of the VFDT signals.  This work 

is delegated to the VFDTDriver class.  The training and testing sets are then formed through the 

use of the CreateInputVectors class.  Finally, the PNNDriver class is used to train the network 

with the input vectors in the training set and also to classify the testing set input vectors.  The 

UML diagram for the classifier driver program that uses the complex domain neural network is 

identical to that of Fig. 4.10, except that the classifier driver is named CNNClassifierDriver and it 

uses the CNNDriver instead of the PNNDriver.  The classifier driver programs require only that 

the high level parameters such as the VFDT window size and displacement, the size of the SOFM 

codewords, the number of codewords, and the specification of the training and testing sets be 

provided.  The values of these parameters are passed along to the corresponding components.  

 

Fig. 4.10:  Classifier driver UML class diagram. 
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The final result of the execution of the driver program is a file summarizing the performance of 

the classification system upon the testing set. 

4.3 Summary 

 This section has discussed the implementation of the system and its components.  While 

the implementation of the system is finished, the overall development of the system is not 

complete until it has been thoroughly tested and verified. 
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CHAPTER 5 

SYSTEM VERIFICATION AND TESTING 

 The necessity of testing and verifying any design, whether it be software or hardware, is 

of paramount importance.  Testing and verification must be performed upon a system in order to 

ascertain whether the results it produces are valid.  The testing and verification of the software 

used in this thesis is subdivided into two distinct sections.  First, each of the individual, distinct 

components of the system underwent separate tests to ensure their accuracy.  Afterwards, testing 

and verification of the system as an integrated whole was performed to ensure that the resulting 

system performed as expected. 

5.1 Component Verification and Testing 

5.1.1 Preprocessing 

 The primary verification of the functionality of the preprocessing component is the 

confirmation that the data conversion performs without introducing any error into the signals.  In 

order to perform this verification, a signal was read from its raw data file and then from the 

processed file.  The values read were then compared visually by plotting the two signals side by 

side and numerically by comparing the signals sample by sample.  Both plotted signals appeared 

as expected, demonstrating that the signals were read correctly and the numerical verification 

demonstrated that the conversion was error free. 

5.1.2 Variance Fractal Dimension Trajectory 

 The calculations involved with the VFDT algorithm for even small signals are a 

computationally heavy process.  Thus, it was determined that verifying the system by hand would 

be far too lengthy a process.  As a result, other methods of verification, both subjective and 

objective, were selected to verify the correctness of the VFDT component. 

 While the VFDT algorithm itself is too involved to verify by hand, the linear regression 

used by the algorithm is simple and ubiquitous enough to independently confirm its correct 

operation.  The linear regression was provided with some points in a Cartesian plane and the 

equation of the resulting regression was obtained.  These values were then confirmed by 
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performing the identical operations by hand and independently verifying the values by using a 

mathematical program to perform the regression. 

 The verification of the operation of the VFDT component was performed mostly by 

computing the VFDT of various simulated power line transients and comparing the results to 

those found in [Chen01].  The plots resulting from the VFDT component developed for this thesis 

and those of the published plots correlated, thus providing a high level verification of the 

implementation of the algorithm. 

 Another subjective measure used to verify the VFDT component was that by visual 

inspection of the plots of the VFDT signals, it was observed that the signals were, for the most 

part, bound between the theoretical limits of one and two.  Furthermore, the signal was reasonable 

in that it seemed to emphasize the changes in the original signal.  Additionally, changes to the 

window size and displacement yielded expected results whereby decreasing the displacement 

increased the resolution of the VFDT signal and differing window sizes controlled the amount of 

smoothing that occurred. 

 Lastly, it should be noted that the artifacts caused by straight lines and certain 

periodicities in the sample domain signal were discovered during the testing and verification of 

this component and modifications were made to the component during the iterative design 

process to reduce the effect of these artifacts, as discussed in Chapter 3.  With the modification to 

the VFDT algorithm, the verification of the reduction of the artifacts was observed.  By 

comparing the individual samples of the VFDT signals before and after the modification to the 

algorithm, it was observed that the difference was minimal, confirming the infrequency in 

occurrence of these artifacts. 

5.1.3 Kohonen Self-Organizing Feature Map 

 The Kohonen self-organizing feature map (SOFM) component was tested by tracing 

through the code and performing some hand calculations and verified using toy problems.  Hand 

computations were performed first in order to ensure the operation of the neurons and the synapse 

weight training.  After completing manual calculations, the correctness of the SOFM component 

was verified by training the SOFM with several groups of sinusoidal signals of varying 

amplitudes, frequencies, and phase, along with noise.  The resulting codebook was plotted and it 

was visually seen that distinct clusters had formed, each of which were characteristic of the 

sinusoidal signal classes.  Further tests were performed to verify the SOFM’s ability to perform 



Chapter 5:  System Verification and Testing 

- 65 - 

feature extraction of signals.  In once instance, the SOFM was instructed to form a representative 

codebook of a complicated signal.  This trained codebook was used to perform learned vector 

quantization of the original signal.  Each interval of the original signal was replaced with the best 

matched codeword in the codebook, producing a signal formed entirely from the codewords in 

the codebook.  Visually, the resulting signal was very similar to the original signal, even though 

the number of codewords was mere a fraction of the total number of interval segments in the 

signal itself.  By computing the mean square error between the two signals, it was noted that 

numerically, the signals were fairly different, but considering the amount of compression 

achieved, the result was acceptable.  This learned vector quantization verified the feature 

extraction capabilities of the SOFM. 

5.1.4 Probabilistic Neural Network 

 The probabilistic neural network component was tested using a small number of hand 

calculations and verified quite extensively by the use of toy problems.  The hand calculations 

were primarily used to confirm that the mathematical calculations in layers of the network were 

being correctly calculated.  Specifically, the program was traced so as to ensure that the neurons 

in the pattern layer were calculating the Euclidean distance between the input to the neural 

network and the training input correctly.  The output of the weighting function of each of the 

pattern layer neurons was also verified by hand.  Additionally, the calculations performed by the 

neurons in the summation layer were performed by hand to ensure that the scaled estimations of 

the PDFs generated by the neurons were correct. 

 The verification of the PNN was performed by evaluating its performance on toy 

problems.  One of the main toy problems used to test the operation of the PNN was to simply 

create k different classes of points in n-dimensional space.  The PNN was trained using various 

example training inputs from each of the k classes.  To verify that the PNN was capable of 

learning and generalizing, the PNN was then tested with samples from the classes that were not 

present in the training set.  The level of difficulty of these point-clustering toy problems ranged 

from very easy, when each class consisted of a single cluster of points, to more challenging, 

where some of the classes were multimodal and the cluster borders overlapped.  The PNN 

performed very well on all of the toy problems, including those which involving multimodal 

classes, typically obtaining correct classification rates well above 90%.   



Chapter 5:  System Verification and Testing 

- 66 - 

 The multi-sigma PNN was also tested using toy problems with classes of points in n-

dimensional space.  With the multi-sigma PNN, the classes of points were designed such that 

some of the class clusters spanned a wide area, while others were very tight and well defined.  

This type of toy problem demonstrated that the multi-sigma training algorithm was capable of 

selecting different sigma values, depending on the relative size of the class clusters.  Accordingly, 

the sigma values selected for classes whose points spanned a wide area received larger sigma 

values, while the classes whose points were confined to a very tight area were assigned smaller 

sigma values. 

5.1.4.1 Line Minimization 

 The verification of the line minimization algorithm used in the training of the PNN 

component was straightforward, as direct inspection could be performed.  Specifically, the line 

minimization component was tested using several higher order polynomials containing a variety 

of local minima and maxima.  The line minimization module was then configured to attempt to 

discover an acceptable minimum over a particular portion of these functions.  Effort was made to 

ensure that the section used for the minimum search contained several different minima and 

maxima, thereby confirming the fact that the optimization problem was not trivial. 

 Upon running the line minimization program on several higher order polynomials, the 

component usually yielded the absolute minimum within the specified interval.  There were 

however, instances in which the program did not find the global minimum, and instead, 

discovered a local minimum.  The reason the algorithm did not always uncover the global 

minimum was not a flaw in the implementation of the component, but rather a problem in the 

algorithm itself.  During the first stage of the line minimization process, the algorithm selects 

several trial points at which it evaluates the function.  The trial point that yields the smallest result 

is assumed to be very close to the global minimum of the function, so the area immediately 

surrounding that point is searched to find the minimum.  However, the assumption that the global 

minimum is close to the smallest result found in the first stage of the algorithm may not always be 

valid. 

 In the simple example shown in Fig. 5.1, the line minimization algorithm selects three 

trial points, which is an unreasonably small number, but has been chosen for explanation 

purposes only.  As can be seen in the figure, of the selected three points indicated by the arrows, 

the point on the extreme left yields the smallest function value of the three.  Hence, the second 
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step of the line minimization algorithm will look for the minimum in the area immediately 

surrounding this trial point.  Of course, in doing so, the algorithm will find the local minimum 

between the X-axis values of 1 and 1.5.  As can be seen in the figure, there is a superior minimum 

located between the X-axis values of 4.5 and 5 that was not identified by the algorithm.   

 This specific difficulty with the algorithm was recognized before the testing process was 

undertaken, but was not considered to be of large concern.  If the number of trial points in this 

example were increased to a more reasonable number, such as 15, then the true global minimum 

would have been identified.  This line minimization is being used in this thesis to optimize the 

smoothing parameter(s) of the PNN, which, as was noted earlier in this paper, generally tends to 

have a region of values which are acceptable.  Hence, more importance was placed on finding a 

reasonable local minimum in a short period of time, as opposed to finding the absolute global 

minimum through a lengthier search. 

 Despite the fact that the algorithm was designed with the knowledge that it might not 

always uncover the absolute minimum within a given interval, the algorithm was shown to 

operate correctly through the testing and verification stage.   
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Fig. 5.1:  Erroneous selection of bounded minimum. 
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5.1.5 Complex Domain Neural Network 

 As was the case with most of the components implemented in this thesis, the testing of 

the complex domain neural network was difficult to perform thoroughly by virtue of the fact that 

its computations were so numerous.  As a result, it would have been time consuming to fully 

verify the algorithm’s calculations by hand.  Nonetheless, the correctness of the neural network 

was verified through a combination of hand calculations and toy problems. 

 Initially, the complex domain neural network using the backpropagation training 

algorithm was verified with hand calculations.  The computations were performed by hand on a 

simple toy problem where the neural network implemented a very simple parity checker 

involving only two inputs, one hidden neuron, and one output neuron.  The calculations focused 

on ensuring that the hidden layer neurons computed the correct net sums, and that the results of 

the activation functions were accurate.  Additionally, some of the partial derivatives used in the 

actual backpropagation algorithm were performed by hand to ensure that the algorithm was 

implemented correctly.  Furthermore, updating of the synapse weights was verified by hand.  The 

hand calculations were limited only to the first few iterations, as attempting to perform full 

verification through the thousands of iterations was overtly cumbersome.  These limited 

calculations that were performed by hand did help to ensure that all the mathematical formulas 

had been programmed correctly. 

 After the hand verification of the complex neural network was completed, the next step 

was to confirm that it was capable of learning, generalizing, and operating correctly as a whole.  

To that end, a more complicated parity testing toy problem was utilized as well as a classification 

problem in an n-dimensional space similar to that used with the PNN.  The complex neural 

network was able to correctly identify the parity of the various inputs in the testing set and 

perform the classification of points in an n-dimensional space.  In both cases, the neural network 

correctly performed the operation on the testing set well above 90%, indicating that the 

component was operating overall as anticipated. 

5.2 Overall System Verification and Testing 

 In addition to performing testing and verification of all the individual components created 

for this thesis, it was still necessary to verify that when all those components were interconnected, 

the overall system would operate correctly.  The overall system operation was verified through 
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the use of simulated signals.  By creating signals with known class memberships, such as power 

line transients used in [Chen01], the classification system using the PNN component was verified 

by performing classification of these signals using both the VFDT and SOFM components to 

perform feature extraction.  Initially, the correct classification rates obtained by the system were 

not as high as expected, achieving rates only in the low 70% range.  However, further 

examination showed that the less than spectacular results were caused because the system was 

consistently unable to classify signals from particular classes.  In these classes, the simulated 

power line transients only exhibited simple transitions and were not fractal in nature, hence, 

according to their VFDT signals, they were all the same.  By grouping these simple transients into 

a single class, the resulting classification results showed much improvement, correctly classifying 

the signals above 90% of the time. 

 In order to further verify the various configurations of the system, additional tests using a 

small subset of the fish trajectory signals and assumed classes based upon a priori knowledge of 

the experiment were performed.  The different system configurations, including the complex 

domain neural network and the probabilistic neural network with complex inputs based systems, 

did, for the most part, successfully perform the requested classification.  The results however, will 

not be quoted here as the classes which the classification was based upon were very limited and 

not known to be true.   

 The only problem that was encountered during system testing and verification was that 

the multi-sigma training algorithm was not able to operate successfully with the fish trajectory 

signals.  During training, the error derivatives unexpectedly become zero, causing the algorithm 

to fail.  It is suspected that the cause of the problem was the size of the classification problem and 

the limited precision of the floating point values used in the PNN component.  Thus, due to these 

complications which were not resolvable within the time limits of this thesis, the PNN multi-

sigma training will not be further examined.   

5.3 Summary 

 The verification and testing of the classification system and its components were 

discussed in this section of the thesis.  Aside from the multi-sigma PNN, no difficulties were 

encountered.  The remaining task is to verify that the classification system indeed works well 

upon stochastic, self-similar, non-stationary signals arising from non-linear systems. 
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CHAPTER 6 

EXPERIMENTAL RESULTS AND DISCUSSION 

 In this section, the experiments used to formally verify and compare the various 

configurations of the system will be presented and explained.  The classification system begins 

with a preprocessing stage to convert the signals into the format used in this thesis.  Following the 

preprocessing stage, a multifractal analysis is performed whereby the signal is transformed into 

the fractal dimension domain to produce a variance fractal dimension trajectory (VFDT).  In one 

configuration of the system these fractal dimensions are directly used as features for the 

classification process.  In the second, Kohonen self organizing feature maps (SOFMs) are used to 

extract the features from the VFDT signal in an attempt to eliminate redundancy while 

simultaneously reducing the size of the classification problem.  To perform the classification 

based on the extracted features, this thesis explores two different types of neural networks:  

probabilistic neural networks (PNN) and complex domain neural networks (CNN).  The signals 

used to verify the various configurations of the system consist of two recordings.  The extent to 

which classification can be performed with a single recording is explored through the use of the 

PNN.  Further experiments upon the system are performed by classifying the signals while taking 

into consideration features from both recordings via the PNN and CNN in separate experiments. 

6.1 Experiment Set-Up 

 The particular verification signals used in this thesis are fish trajectory recordings 

produced from a tracking system that monitors the position of a fish in a fish tank along the X, Y 

and Z axes when presented with various stimuli, as explained in Appendix A.  Seventeen of these 

recordings have been obtained and are used for the formal experiments.  Of the 17 recordings, 

nine involve one particular fish while the remaining eight concern a different fish.  Ordinarily, 

class specifications and examples from each of the classes would be available to construct the 

training and testing sets which are used to train the classification system and evaluate its 

performance.  These specifications were not available for the fish trajectory signals.  Since 

training and testing sets are a necessity, an objective method in deriving these sets was sought.  It 

was decided that clustering upon the time domain signals using an SOFM would be an 

appropriate vehicle to arrive at the desired class specifications.  A full discussion of the derivation 

of the training and testing sets is presented in Appendix B. 
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 This thesis is not concerned about the classification of the fish signals per se, but rather in 

using them in order to verify the system.  Thus, the two most important axes, X and Z, are used 

since the CNNs only operate on two simultaneous recordings. 

 Through the clustering performed upon the signals in Appendix B, it was shown that four 

different classes were present in each signal when they were divided into segments of 4096 

samples, which corresponds to just under seven minutes.  All the segments from nine of the files 

were dedicated to the training set, while the segments from the other eight were delegated to act 

as the testing set.  Both the training and testing sets have approximately equal number of 

recordings from both of the fish.  It is important to note that the training and testing sets are 

mutually exclusive so as to provide an unbiased performance assessment of the various 

configurations of the classification system. 

 With the training and testing sets established, the classification of the signals can actually 

be performed.  Preprocessing is the first task that must be executed so as to put the signals into 

the propriety format used by the rest of the components in their analysis.  The recordings along 

 
Fig. 6.1:  Time domain plots of a fish trajectory signal. 
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the X and Z axes for a sample signal following the preprocessing stage are plotted in Fig. 6.1.  

The time required to perform this preprocessing for each signal is approximately four and a half 

minutes on a 1 GHz AMD Athlon computer. 

 The next stage of the classification system involves computing the VFDT of the signals 

for the purpose of feature extraction.  There are two parameters involved in calculating the 

VFDT:  window size and the displacement of the windows.  Normally the window size would be 

decided upon based on the largest stationarity of the signal; however not enough is known about 

the fish trajectory signals, so the window size had to be determined experimentally.  It was 

discovered that a window size of 2048 and window displacement of 256 provided the best results 

in that the combination yielded a good balance between an adequate resolution and substantial 

reduction in the problem size.  Because of this displacement, 256 samples in the sample domain 

correspond to one sample in the VFDT, thus the 4096 samples in each segment are represented by 

only 16 fractal dimensions.  The plots of the VFDT signals corresponding to the signals of Fig. 

6.1 are shown in Fig. 6.2.  The processing time required to computer these plots for each axis is 

 
Fig. 6.2:  VFDTs of a fish trajectory signal. 
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only a third of a second.  The first thing to note about the VFDT plots is that the fractal dimension 

of the signals change, indicating that it is a multifractal.  It can further be noted that the samples 

of the VFDT are normalized between dimensions of one and two, which is essential for the 

classification process.  Additionally, the VFDT plots visually seem to correspond to the time 

domain plots in that they tend to emphasize some of the characteristics in the original signal; the 

most exemplary characteristic being the initial dramatic changes in the VFDT signals which 

correspond to the irregular motion of the fish as seen in the time domain plot.  The VFDT plots 

shown are characteristic of all the fish trajectory VFDTs. 

 In calculating the VDFT, log-log plots were produced and linear regressions upon the 

points in these plots were computed as per the VFDT algorithm as presented in Chapter 2.  As a 

means of evaluating the signal’s accordance to the power law behaviour, mean square errors 

(MSEs) between the linear regression and the sample points in these log-log plots are tabulated in 

a histogram format, as shown in Fig. 6.3, which correspond to the VFDT signals in Fig. 6.2.  The 

vast majority of the MSEs are low, which indicates that the power law behaviour is exhibited 

 
Fig. 6.3:  MSE histogram of the VFDT of the fish trajectory signal. 
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throughout most of the signal.  There are some outliers where the MSE is more substantial but 

their occurrence is very seldom.  This adherence to the power law behaviour indicates that the 

particular window size is valid for the signal and furthermore, that indeed that the signal is fractal 

in nature. 

 Segmentation of the VFDT signals is performed at this stage in such a manner to 

correspond to the time domain segments of length 4096 as defined for the training and testing 

sets.  These VFDT segments are the features for classification. 

 In the configurations of the system using the SOFM, feature extraction is performed upon 

these VFDT segments.  The SOFMs can be used to extract features from VFDT segments which 

consist of a single recording or multiple recordings.  In order to facilitate the extraction of 

features from segements involving multiple recordings, the recordings are merely appended to 

each other prior to being presented to the SOFM as was shown in Eq. (3.1). 

 For the formal experiments used to verify the different configurations of the classification 

system, the SOFM was configured to use three codewords, each of which had a length of four.  

This combination means that 12 features are extracted from each VFDT segment.  The 

configuration of three codewords with a length of four apiece was selected as experimentally it 

yielded very good results.  Scenarios where fewer codewords were used usually produced decent 

results and decreased the problem size even further.  However, the overall classification accuracy 

decreases with fewer codewords.  Since none of the systems take more than a few seconds to 

execute, it was decided to make use of more codewords instead of reducing the problem size as 

much as possible. 

 Figure 6.4 shows a sample segment of a VFDT and its corresponding SOFM codebook.  

The codebook contains the codewords most representative of the signal and it should also be 

noted that the classification problem size is reduced during the transition from the VFDT segment 

to the SOFM codebook in that the number of features used to represent the signal segment is 

reduced.  The generation of the all the codebooks for the entire training and testing sets require no 

more than a third of a second, whether it be for a single recording signal or a multiple recording 

signal.  In the configurations of the system involving the SOFM component, it is these codebooks 

and their codewords that are provided as inputs into the neural networks rather than the VFDT as 

is done when the SOFM module is not used. 
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6.2 Results 

6.2.1 Experiment 1:  X-Axis with PNN 

 For the first experiment, the VFDT segments corresponding the X-axis were directly used 

to form training and testing sets for use with the PNN.  It took approximately four seconds to 

train the PNN and less than a fifth of a second to classify the entire testing set consisting of 544 

input vectors.  The results of the testing set classification are summarized in the confusion matrix 

shown in Table 6.1.  The rows of the confusion matrix indicate the expected class of a particular 

signal segment, as defined in the testing set, whereas the columns indicate the experimental 

classification result produced by the PNN.  The count in any given cell is the corresponding 

number of signal segments from the testing set which the PNN considered to belong to that class.  

As a result, the entries along the diagonal indicate the number of correct classifications for a 

given class whereas cells off the diagonal indicate incorrect classifications where the PNN 

identified the signal segment as belonging to a class different than was expected.  The column on 

 
Fig. 6.4:  VFDT segment and its codebook. 

Table 6.1:  X-axis PNN confusion matrix. 

Experimental  

1 2 3 4 

Correct 
Classification 

Rate 
1 24 0 0 0 100.00% 

2 3 135 4 4 92.47% 

3 0 12 111 65 59.04% 

Ex
pe

ct
ed

 

4 0 23 70 93 50.00% 

Average Correct Classification Rate:  66.73% 

95% Confidence Interval:  [62.77%, 70.69%] 
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the extreme right indicates the percent correct classification for each of the individual classes.  

With respect to the first experiment, the table show that all 24 inputs from class 1 were classified 

correctly, yielding a classification accuracy of 100%.  For the second class, three inputs were 

erroneously considered to belong to class one, four inputs to class three, and four inputs to class 

four.  However, the classification system correctly identified 135 inputs as belonging to class two, 

which meant that class two had a correct classification rate of 92.47%.  This same analysis 

procedure can be performed for the remaining rows of the confusion matrix. 

 The average classification rate, shown below the confusion matrix, is the overall 

performance indicator of the network and is the ratio of the number of correct classifications to 

the total number of signal segments presented to the network.  For example, in this experiment 

the average classification rate is calculated by (24 + 135 + 111 + 93) / 544 * 100%.  For this 

experiment, the average classification rate is approximately 67%.  Despite the overall poor 

performance, the system did function quite well with respect to the first two classes.  However, 

the network was simply not able to differentiate between the last two classes with much success.  

Although 67% is not a substantially high correct classification rate, if the system were to perform 

classification by randomly guessing to which class an input signal belongs, then the expected rate 

of classification would only be 25%.  In that regard, 67% shows that there is confidence that the 

system is able to analyze the signal and is not just performing arbitrary assignments.  However, a 

67% correct classification rate is still far from the desired rate of 90%. 

 Since randomness is involved in the particular selection of the testing sets, confidence 

intervals are computed.  These particular intervals show the range of values within which the true 

classification rate falls, with a confidence of 95%.  The computation of the confidence intervals 

for the average classification rate comes from the binomial distribution, in that each input vector 

to the neural network is either correctly or incorrectly classified.  The estimation of the standard 

deviation about the true mean is given by (1 ) /s r r n= − , where r is the average classification 

rate and n is the total number of input vectors in the testing set.  The 95% confidence intervals are 

defined by [r – 1.96s, r + 1.96s].  For this experiment, it can be stated that the true mean 

classification rate falls between 62.77% and 70.69% with a 95% confidence.  This experiment did 

not produce a correct classification rate as high as desired, even when the confidence intervals are 

taken into consideration; however, this experiment only made use of the information in the X-axis 

recordings.  The additional inclusion of the information contained in the Z-axis during the 

classification process should increase the classification rate. 
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6.2.2 Experiment 2:  X-Axis with SOFM and PNN 

 The second experiment performed was similar to the first experiment in that only the X-

axis information from the fish trajectory signals was used to perform classification.  What 

differentiates these two experiments is the fact that the second experiment made use of the SOFM 

component to perform feature extraction upon the VFDT signal whereas the first experiment did 

not.   

 The inclusion of the SOFM feature extraction process did not improve the overall 

classification rate of the system as indicated by the average classification rate seen in Table 6.2.  

Making use of the SOFMs did, however, reduce the number of inputs into the PNN from 16 in 

experiment one to 12 in experiment two, which caused a reduction in the training and execution 

times of the system.  Hence the SOFM stage did not improve the overall classification accuracy 

of the system, but it did reduce the classification problem size, which expedites the classification 

process.  Specifically, the training time was reduced to a little less than three seconds while the 

execution time was closer to a tenth of a second. 

 One important aspect to note about the confusion matrix for experiment two is that the 

classification system was able to distinguish between the first three classes with a good deal of 

success, but was unable to perform effective classification upon the fourth class.    

 Overall, no conclusions can be drawn as to whether the system configuration presented in 

this second experiment provided superior classification accuracies than the first because the 

confidence intervals overlap.  As with the first experiment, the performance of the classification 

system in this particular configuration is disappointing. 

Table 6.2:  X-axis SOFM PNN confusion matrix. 

Experimental  

1 2 3 4 

Correct 
Classification 

Rate 
1 24 0 0 0 100.00% 

2 4 131 8 3 89.73% 

3 0 16 131 41 69.68% 

Ex
pe

ct
ed

 

4 0 29 84 73 39.25% 

Average Correct Classification Rate:  65.99% 

95% Confidence Interval:  [62.01%, 69.97%] 
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6.2.3 Experiment 3:  Z-Axis with PNN 

 The third experiment has the same set-up as experiment one except for the fact that it 

utilizes the Z-axis fish trajectory information rather than the X-axis.  Hence, the goal of the 

experiment was to gauge the importance of the Z-axis information as compared to the X-axis 

information for the fish trajectory signals and to see how the differences in importance affect the 

classification rate. 

 The confusion matrix for this experiment, as shown in Table 6.3, indicates that this 

configuration of the classification system was not very effective in differentiating between the 

first three classes.  However, this configuration of the system was quite successful in classifying 

inputs of fourth class.  It should be noted that when classification was performed upon the 

information in the X-axis, as was done in experiments one and two, the systems were able to 

classify inputs from the first two classes, but failed to perform well on the class four inputs.  

Hence, the information contained in the X and Z axes is somewhat complimentary in that the 

information in the X-axis signal can be used to identify inputs from classes one and two and the 

Z-axis signals can be used to identify signals of class four.  Given this observation, using both the 

X and Z axes during classification should cause the classification rate to improve significantly.     

 Overall, the performance of the configuration of the system used for this experiment was 

inferior to that of experiment one as the average classification rate was a lower value of about 

58%.  This experiment also required the same amount of time to train and execute as in 

experiment one because the problem size remained constant.  The fact that the results from 

experiment one were superior to those attained through this experiment seems to indicate the X-

axis of the fish trajectory signals contains more important information than the Z-axis. 

Table 6.3:  Z-axis PNN confusion matrix. 

Experimental  

1 2 3 4 

Correct 
Classification 

Rate 
1 15 3 3 3 62.50% 

2 9 43 44 50 29.45% 

3 7 51 89 41 47.34% 

Ex
pe

ct
ed

 

4 0 5 12 169 90.86% 

Average Correct Classification Rate:  58.09% 

95% Confidence Interval:  [53.94%, 62.24%] 
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6.2.4 Experiment 4:  Z-Axis with SOFM and PNN 

 This experiment is analogous to experiment two in that the overall set-up of the system 

was the same, but rather than making use of the X-axis recordings, this experiment performs 

classification using the information in the Z-axis signals.  This experiment is also similar to 

experiment three, except that for this experiment, SOFMs are used to extract the important VFDT 

features prior to classification. 

 Table 6.4 shows that the configuration of the system used for this experiment did not 

successfully differentiate between the first three classes.  In fact, the classification accuracy of the 

second class was an extremely low rate of 15.75%, showing that this system was very confused as 

to what defined the characteristics of that class.  Similar to experiment three, the configuration of 

the system used for this experiment was very effective in classifying inputs from class four. 

 The overall average classification rate for this experiment was slightly higher than those 

obtained in experiment three.  Hence, not only did the inclusion of the SOFMs cause a reduction 

in the problem size, effectively shortening the training and testing speeds to the levels indicated in 

experiment two, they also caused an increase in the average classification rate.  Even though the 

classification rate for this experiment is slightly higher than that achieved in experiment three, 

conclusions can not be drawn as to which system configuration was superior in terms of 

classification accuracy as the confidence intervals for the two experiments overlap. 

Table 6.4:  Z-axis SOFM PNN confusion matrix. 

Experimental  

1 2 3 4 

Correct 
Classification 

Rate 
1 15 1 5 3 62.50% 

2 12 23 66 45 15.75% 

3 10 19 127 32 67.55% 

Ex
pe

ct
ed

 

4 0 4 15 167 89.78% 

Average Correct Classification Rate:  61.03% 

95% Confidence Interval:  [56.93%, 65.13%] 
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6.2.5 Experiment 5:  X and Z-Axis with PNN 

 Building off the idea that greater classification rates may be possible if both the X and Z 

axes are utilized, this experiment focuses on the case where both axes are taken into consideration 

when performing classification with the PNN. 

 The system used for this experiment performed at a consistently high rate for all of the 

different classes.  The individual classification rates for each class were all above 90% except for 

class three.  When the X and Z axes were used independently for classification, as was the case 

for experiments one through four, class three consistently had a fairly low classification rate.  

Thus, it is not all that surprising that the when the classification system uses information from 

both X and Z-axis that it still has difficulties with class three. 

 Overall this experiment produced the highest average classification rate of any of the 

experiments and the results are summarized in Table 6.5.  The slight drawback of this 

configuration of the system when compared to the systems outlined in experiments one though 

four is that this system takes approximately twice as long to run since the classification problem 

size is twice as large.  However, in this case that meant that the classification system took 

approximately seven seconds to train and a quarter of a second to execute, which is still very fast 

and meets the time-based design constraints.  This is also the one system that meets the design 

constraint of at least a 90% average correct classification rate. 

Table 6.5:  X and Z-axis PNN confusion matrix. 

Experimental  

1 2 3 4 

Correct 
Classification 

Rate 
1 24 0 0 0 100.00% 

2 3 139 2 2 95.21% 

3 0 12 157 19 83.51% 

Ex
pe

ct
ed

 

4 0 9 1 176 94.62% 

Average Correct Classification Rate:  91.18% 

95% Confidence Interval:  [88.80%, 93.56%] 
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6.2.6 Experiment 6:  X and Z-Axis with SOFM and PNN 

 This experiment is analogous to experiments two and four where the SOFMs are used in 

an attempt to improve classification.  However, for this experiment, rather than simply using the 

X or Z-axis independently, this experiment considers both axes when developing the codebooks 

used for classification. 

 As with experiment seven, the system configuration used in this experiment produced 

very good results.  Test inputs were classified quite successfully for each of the classes and the 

average classification rate was a respectable 87.68%, as shown in Table 6.6.  From this data it 

cannot be determined whether the system used for this experiment was outperformed by the 

configuration from experiment five because the average classification rate confidence intervals 

overlap.  However the execution time of the system used for this experiment is less than that of 

the system in experiment five because it only took a little more than three seconds to train and a 

sixth of a second to execute.  Hence, the system used for this experiment yielded a classification 

rate almost as high, if not as high as that of experiment five’s system, while requiring less training 

and execution time. 

6.2.7 Experiment 7:  X and Z-Axis with CNN 

 Although experiments six and seven showed that the PNN is capable of classifying the 

fish trajectory signals at very high classification rates by appending information from the X and Z 

axes together, further experiments were performed to see how well a complex domain neural 

network would perform.  The PNN was not designed to be used in conjunction with complex 

valued signals, but the complex domain neural networks were explicitly created for that purpose.  

Table 6.6:  X and Z-axis SOFM PNN confusion matrix. 

Experimental  

1 2 3 4 

Correct 
Classification 

Rate 
1 23 1 0 0 95.83% 

2 2 133 5 6 91.10% 

3 0 14 161 13 85.64% 

Ex
pe

ct
ed

 

4 0 19 7 160 86.02% 

Average Correct Classification Rate:  87.68% 

95% Confidence Interval:  [84.92%, 90.44%] 
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Hence it was conjectured that greater classification accuracy would be obtained through the use 

of the complex domain neural networks. 

 This experiment is very similar to experiment five except for the fact that complex valued 

signals are formed by representing the X-axis as the real part and the Z-axis as the imaginary part 

of the complex numbers.  This complex number representation is in contrast to how the inputs to 

the PNN were simply a set of concatenated real values.   

 The complex domain neural network used in this experiment performed quite well in 

separating all of the different classes.  As is the common trend throughout most of these 

experiments, the first class had a very high correct classification rate while the system did not 

produce quite as good results for class three.   

 As is shown in Table 6.7, the average classification rate for this experiment was about 

87% which provides a high confidence in the system to perform correct classification.  The 

confidence intervals do overlap with those in experiment five, so again, it can be confidently 

concluded that the system of experiment five performed any better than the complex domain 

neural network used here.  Another factor to consider with respect to this experiment is that the 

complex neural network took nearly seven minutes to train but only thirty milliseconds to execute 

the entire testing set. 

6.2.8 Experiment 8:  X and Z-Axis with SOFM and CNN 

 The final formal experiment is fairly similar to experiment six, only this time, the 

complex domain neural network was used as the classifier rather than the probabilistic neural 

Table 6.7:  X and Z-axis CNN confusion matrix. 

Experimental  

1 2 3 4 

Correct 
Classification 

Rate 
1 23 0 0 1 95.83% 

2 3 127 8 8 86.99% 

3 0 11 151 26 80.32% 

Ex
pe

ct
ed

 

4 0 13 3 170 91.40% 

Average Correct Classification Rate:  86.58% 

95% Confidence Interval:  [83.72%, 89.44%] 
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network.  For this experiment, the codebooks are identical to those used during experiment six, 

except now the portions of the codebook that correspond to the X-axis are used to form the real 

part of a complex number while the Z-axis components fulfill the role of the imaginary part of the 

complex number.  This complex number representation of the codebook is then used as the input 

into the complex domain neural network. 

 As the confusion matrix shown in Table 6.8 indicates, the SOFM, CNN combination 

performed quite well.  The performance difference between the configuration of the system used 

in this experiment as compared to results obtained through experiment seven are insignificant as 

indicated through their overlapping confidence intervals.  Yet, the configuration of the system 

presented in this experiment only required five minutes to train and twenty milliseconds to 

execute.   

6.3 Discussion 

 The formal verification experiments performed upon the various configurations of the 

system using the fish trajectory signals provided some valuable insight into the abilities of the 

different systems.  First, configurations using, and the corresponding systems not incorporating 

SOFMs obtained average classification rates that were approximately equal.  Essentially, the 

SOFMs were successful in removing the redundant information content contained within the 

signals so that less features were used in the classification process while still maintaining high 

classification rates.  Because the SOFMs reduced the size of the classification problem, the 

systems that made use of the SOFMs were faster than the equivalent systems that did not use the 

SOFMs.   

Table 6.8:  X and Z-axis SOFM CNN confusion matrix. 

Experimental  

1 2 3 4 

Correct 
Classification 

Rate 
1 24 0 0 0 100.00% 

2 2 129 10 5 88.36% 

3 0 13 150 25 79.79% 

Ex
pe

ct
ed

 

4 0 16 10 160 86.02% 

Average Correct Classification Rate:  85.11% 

95% Confidence Interval:  [82.12%, 88.10%] 
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 A second general observation that can be made from these experiments is that the 

classification systems that made use of only the X-axis information outperformed those systems 

which only used the Z-axis information.  This indicates that the X-axis contains more important 

information than the Z-axis.  Configurations that made use of both axes simultaneously, however, 

dramatically outperformed the systems that only utilized one axis.  Intuitively this finding makes 

sense as the clustering techniques as explained in Appendix B use both axes when deriving the 

classes.  Hence, when a classification system only makes use of one of the X or Z-axis, it is 

effectively only taking only half the information content of the signal into account.  The systems 

making use of both axes used all the information in the signals when making classification 

decisions, which provided higher classification rates.  In improving the classification rate above 

configurations utilizing only a single axis, the neural networks when presented with both axes, 

demonstrated that they were also able to differentiate between which axis information was 

important when making each individual classification decision.  More specifically, the X-axis 

seemed to contain the most important information regarding classes one and two while the Z-axis 

seemed to provide the most information regarding class four.  Both the CNN and PNN were able 

to use the complementary information from each of the signals in order to achieve greater 

classification accuracy. 

 A third observation to note is in regard to the training and execution times of the two 

neural networks used to perform classification based on the selected features.  It was stated in the 

background that probabilistic neural networks train orders of magnitude faster than most other 

neural networks, and this fact is corroborated by the results of the experiments performed.  When 

comparing the training time of experiment five to that of experiment seven, the PNN trained more 

than 50 times faster than the CNN.  In comparing experiments six and eight, the CNN was 

approximately 100 times slower than the PNN.  In terms of execution time, PNNs were stated to 

generally have slower execution times than other neural networks, and again, the experiments 

confirmed this fact.  In the experiments performed in this thesis, once trained properly, the CNNs 

were able to classify input vectors more than eight times faster than the PNNs.  But in the end, 

both networks were fully able to meet and exceed both of the time design constraints, in that the 

training time for the neural networks were only on the order of minutes or seconds, and the 

networks were both able to perform classification upon eight separate eight hour signals in less 

than a second; hence, based on their speed of execution, they would be applicable for use in real-

time systems. 
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 Overall, from the experiments it appears that the system used in experiment five whereby 

the PNN makes use of both X and Z-axis information provided the highest correct classification 

results.  This configuration of the system attained an average classification rate of about 90% 

which indicates that a high degree of confidence can be placed in the results obtained by the 

system.  However, one may wonder why the system does not obtain classification rates in the 

range of 95-100%, especially when both the clustering analysis and PNN techniques use 

Euclidean distance during their calculations.  The main flaw in this logic is that the training and 

testing sets were derived directly from the fish trajectory time series, whereas the actual 

classification system based its decisions upon the multifractal characterization provided by the 

variance fractal dimension trajectory.  Hence, the clustering analysis performed to derive the 

testing and training sets is very sensitive to factors such as changes in magnitude and phase shifts.  

Because of these shortcomings with the clustering algorithm, the training and testing sets derived 

and used for the formal experiments may not be optimal.  These non-ideal testing and training 

sets would be a contributing factor in decreasing the average classification rate.  Other reasons 

why a perfect classification rate is not practical include the fact that the signals used in this thesis 

contain inherent noise which was not removed during the preprocessing stage and that not enough 

training and testing sets were utilized. 

6.4 Summary 

 This section presented the formal experiments conducted in verifying the classification 

system developed for this thesis.  In performing these experiments with the fish trajectory signals, 

the results were mostly as expected and a number of observations were made.  First, it is 

detrimental to the classification process to ignore information contained in the signal.  Second, 

while the use of the SOFM was generally unsuccessful in improving the classification of the 

system, it was able to reduce the size of the classification problem while maintaining 

approximately the same level of accuracy.  The PNN and CNN both performed well; however, 

the PNN trained orders of magnitude faster than the CNN, but the CNN executed faster than the 

PNN.  In the end, all the design constraints for the classification system were met in the particular 

configuration where the PNN utilized the VFDT from both the X and Z axes as the features for 

classification. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

 This thesis illustrated a system capable of classifying the general group of self-similar, 

stochastic, non-stationary signals which originated from non-linear processes.  This thesis is 

unique in that it uses very experimental, but powerful techniques to perform classification upon 

these signals, because traditional signal processing methods are insufficient.  The use of the 

VFDT has also been shown to be effective in extracting a set of compressed features which 

represent the characteristics of the signal while simultaneously performing normalization.  These 

fractal dimension features have been shown to be a sufficient metric upon which to classify these 

challenging signals.  Furthermore, probabilistic neural networks and complex domain neural 

networks have been shown to be capable of performing classification based on these extracted 

features with a high degree of success.  The system developed for this thesis is also very practical 

as it has been designed to adapt to a wide array of signals including those which are composed of 

multiple signals. 

 This thesis presented various different configurations of the classification system.  One 

system was shown to meet all the specified design criteria, namely a correct classification rate of 

at least 90%, a system training time of less than one day, and an execution time of less than the 

signal duration itself.  Several other configurations also met the time-based constraints, but failed 

to meet the correct classification rate by about 5-10%. 

7.2 Recommendations 

 Although the classification system created for this thesis was shown to perform quite 

successfully in classifying non-stationary, self-similar, stochastic signals which may or may not 

consist of multiple recordings, there are always further improvements that could be made.  One 

such enhancement would be to tweak the PNN training algorithm that selects a separate sigma 

value for each class so that it correctly functions with the fish trajectory signals.  Similarly, the 

multi-sigma concept could be extended even further to include a separate sigma value for each 

variable.  This could improve performance in the case where the inputs to the PNN consist of 
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multiple recordings as there is no guarantee that each recording has equal importance.  A different 

sigma for each variable would take the variation of importance of each recording into account and 

potentially improve the performance of the PNN with such signals. 

 Additionally, the classification system could be extended to incorporate hypercomplex 

inputs.  In the case of the fish trajectory signals, this addition would allow all the axes to be 

included in the classification process rather than just the X and Z axes.  For the fish trajectory 

signal, this addition may not significantly improve performance as it is difficult to gauge the 

importance the Y-axis readings.  However, other signals that consist of three or more independent 

recordings, each of which holds significant information content, may benefit greatly from this 

enhancement. 

 Another beneficial task that could be undertaken is comparing the results of the 

classification system developed for this thesis with those derived by expert psychologists 

studying the fish trajectory signals.  This collaboration was not arranged in time for this thesis, 

hence the classes were derived and the system verified in a completely objective manner.  

Comparing the objective classification system with the subjective analysis performed by the 

experts would provide another metric to evaluate the performance of the system and may lead to 

insight as to further improvements to the system  

 A total of 17 different fish trajectory signals were used for the formal experiment in this 

thesis.  Of these 17 recordings, nine were used for training while eight where used for testing the 

system.  These signal recordings provided sufficient results for this thesis, but incorporating a 

larger training set should improve the performance of the system and an increased testing set 

would provide a better overall picture of the system’s performance. 

 A task that could be completed to further verify the performance of the system would be 

to superimpose synthetic noise upon the signals in order to test the system’s robustness to noise.  

Further, the use of additional types of signals with the system would further test the neutrality of 

the system with respect to the specific signal used and would show that the system can be applied 

to a variety of stochastic, self-similar, non-stationary signals with a high level of success. 
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APPENDIX A 

FISH TRAJECTORY SIGNALS 

 The signals used for verifying the classification system developed for this thesis are fish 

trajectory signals obtained from Dr. Pear of the University of Manitoba’s psychology department.  

Dr. Pear studies operant conditioning principles through dishabituation experiments, whereby the 

spatio-temporal agonistic behaviour of Siamese fighting fish is studied.  During these 

experiments, one of several fish is placed inside a fish tank with a mirror at one end.  A 

stereoscopic camera system is used to track and record the three dimensional Cartesian co-

ordinates of the fish over an eight hour period, where the position of the fish is sampled ten times 

a second.  The experiment set-up and co-ordinates of the system are shown in Fig. A.1.  The X-

axis is the direction normal to the mirror, the Y-axis is the lateral distance along the mirror, and 

the Z-axis is the direction along the height of the fish tank.  The stereoscopic capability of the 

camera system is used to obtain the Y-axis. 

 Sample fish trajectory recordings for a particular fish are shown in Fig. A.2.  This figure 

represents the fish’s position in the tank during one of the dishabituation experiments along the X, 

Y, and Z axes.  As can be seen in these figures the fish exhibits different behaviour patterns over 

the eight hours period of the dishabituation experiment.  Particular attention should be drawn to 

approximately the first 15 minutes of the experiment.  During this time frame, the fish maintains 

close proximity to the mirror which is indicated by the very small X-axis values.  In essence, the 

fish is responding to its natural instinct to attack an enemy, i.e. the reflection.  Additionally,  

 

Fig. A.1:  Fish trajectory signal experiment set-up and fish tank co-ordinate system. 
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Z
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Fig. A.2:  Fish trajectory signals. 



Appendix A:  Fish Trajectory Signals  

A-3 

during these initial 15 minutes the fish remains close to the surface of the tank, as indicated by 

large Z-axis values.  This behaviour is exhibited because the fish breathes air and requires more 

air when it is excited. 

 Following the initial 15 minute period the fish begins to move farther away from the 

mirror and for longer periods of time.  At seven hours into the experiment, the mirror is removed 

for 60 seconds and a dishabituation stimulus is presented in an attempt to have the fish revert to 

its initial behaviour.  This dishabituation stimulus is a conspecific – another Siamese fighting fish 

– in a separate fish tank positioned at the side of the tank directly opposite the mirror.  After 60 

seconds the mirror is restored to its original position and the conspecific is removed. 

 As previously mentioned, the stereoscopic portion of the camera system was used to 

obtain the Y-axis recordings.  Because of this configuration, the Y-axis is the least accurate of 

any of the axes.  This was arranged because the Y-axis is the only direction which there is no 

explicit stimuli and is considered the least significant in terms of the information provided.  Both 

the mirror and conspecific are stimuli along the X-axis and is correspondingly considered the axis 

that contains the most useful information.  While the experiment presents no stimuli along the Z-

axis, what differentiates this direction from that of the Y-axis is that the fish must periodically 

breathe air, and this action of rising to the surface of the water to breathe has significance in the 

experiment.  As this thesis restricts its scope to developing a system to classify signals composed 

of two correlated recordings, only the X and Z axes used for the purpose of verifying the system. 

 As with all real signals, the tracking system is subject to noise and inaccuracies along all 

three axes.  Furthermore, because of the set-up of the experiment, the system sometimes 

encounters tracking errors where the fish moves into a particular position close to the mirror that 

is outside the view of the camera, and results in missing samples.  These non-idealities aid in 

testing the robustness of the signal classification system. 

 An important issue to consider when processing any signal is the sampling rate.  

Obviously the sampling rate must adhere to the Nyquist sampling theorem.  The following 

explanation justifies the sampling rate used in the recording of the fish trajectory signals.  Assume 

that the fish moves in a sinusoidal trajectory at the Nyquist frequency, or half of the sampling 

frequency.  Further, assume that the amplitude of the sinusoidal is approximately the size of the 

fish, since this guarantees that the tracking system identifies this lateral motion.  The resulting 

signal is given by x = Asinωt, where A is the amplitude, 2 cm, and ω is the Nyquist frequency, 
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2π5 rad/s.  The corresponding velocity is given by the derivative of this sinusoidal, v = Aωcosωt.  

If the fish is to travel this particular trajectory, then it must be able to move at the maximum 

velocity, Aω.  Thus, the fish must be able to reach a speed of 62.8 cm/s.  However, this value is 

beyond the maximum speed of the fish observed during these experiments and thus, it is not 

possible for there to be frequencies above the Nyquist frequency, given the sampling rate of 10 

Hz.  Therefore, the sampling rate is valid for this signal. 

 The purpose of attempting signal classification upon these signals is to identify the 

various behaviours exhibited by the fish in an automated, quantitative manner.  This quantitative 

assessment based on the position of the fish in the fish tank could then be compared to the 

psychological qualitative analysis performed by Dr. Pear and his graduate students.  Because this 

signal emanates from a living being that is acting erratically, the system in question is non-linear.  

Further, the fish’s reaction to the stimuli is random in nature and changes over time, hence its 

stochastic and non-stationary properties.  The self-similarity property of a signal is difficult to 

intuitively identify, but it can be shown that the signal is indeed self-similar.  Because of the 

complex nature of the signal and the properties it exhibits, this fish trajectory signal is used as the 

basis to verify the performance of the classification system developed for this thesis. 
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APPENDIX B 

CLUSTERING OF FISH TRAJECTORY SIGNALS 

 The fish trajectory signals used for the verification of the classification system developed 

for this thesis were not accompanied by the specification of the classes.  However, example 

signals from each of the different classes are required in order to establish the training and testing 

sets.  For the purposes of this thesis, the determination of the classes is to be performed in an 

objective manner that is unbiased with respect to the techniques used in the thesis itself.  

Furthermore, this class specification is to be performed assuming nothing about the data itself, so 

as not to bias the results based on a priori information. 

 In order to determine these class specifications, it is desired to perform a clustering 

analysis upon the signals to discover the groupings that exist within the signal.  There are 

numerous techniques for performing clustering, but most require that at minimum, the number of 

classes be known a priori; information that is unfortunately not known for the fish trajectory 

signals.  The proposed clustering technique is Kohonen self-organizing feature maps (SOFMs), as 

discussed in the background in Chapter 2.  This unsupervised neural network is able to perform a 

topology-preserving clustering with no a priori information about the data.  The result of training 

the network is a codebook consisting of codewords representative of the input vectors to be 

clustered.  The codewords in the codebook are grouped in the codebook based on their similarity.  

By visually viewing the groupings of the codewords, the underlying clustering of the signal can 

be inferred. 

 Each signal is divided up into a number of segments and it is these segments of the 

signals which are to be classified by the system and thus clustering is based upon these segments.  

By utilizing these segments of the signal as the input vectors to the SOFM, it will produce the 

desired codebook containing the clusters.  However, it would be naïve to perform clustering only 

upon one axis since it would then completely ignore the information contained in the other axes.  

Since this thesis restricts the classification to complex valued signals composed of two separate 

recordings and the purpose of utilizing these fish trajectory signals is solely for the verification of 

the system, not the analysis of the behaviours of the fish, only the axes considered to be the most 

important, the X and Z-axis, are considered.  In order to adapt the SOFM to perform clustering by 

taking both axes into account, the input vectors to the SOFM are formed by concatenating the 

signal segments from the X and Z-axis, as explained in Eq. (3.1). 



Appendix B:  Clustering of Fish Trajectory Signals  

B-2 

 The difficulty in performing this clustering based on both the X and Z-axis is that 

because of the nature of the signals, the fish exhibits more dramatic changes along the X-axis as 

compared to the Z-axis.  This inequity causes a problem because the X-axis influences the 

clustering much more than the Z-axis because of its greater changes in magnitude.  To circumvent 

this problem and to put the two axes on equal footing, a Z-score normalization is performed 

separately upon the axes, whereby the signal samples are normalized according to (B.1), where x 

is the sample, x  is the sample mean of all the samples for the axis, and s is the sample standard 

deviation of all the samples for the axis. 

 
x xy

s
−

=  (B.1) 

The axes are separately normalized such that the mean of all the samples for the axis is zero and 

the standard deviation is one.  This normalization ensures that both axes equally influence the 

outcome of the clustering, as desired.  This need for explicit normalization is in contrast to the 

actual classification system where the computed variance fractal dimension trajectory naturally 

produces normalized features. 

 The details of the operation and training of the network, as well as the design, 

implementation, and testing and verification of the SOFM can be found in the body of the thesis. 

 Once the SOFM has been trained, the codebook must then be analyzed to discover the 

clusters of the signal segments.  It was found that segments of length 4096 samples, or 

approximately 6.8 minutes, produced decent clustering.  Plots of the codebook using segments of 

the aforementioned size are shown in Fig. B.1 where the portions of the codewords corresponding 

to the different axes are first extracted and then appended together.  Thus, in the figure, the first 

codeword actually consists of the segment between 0 and 1 of the X-axis codebook followed by a 

concatenation of the segment between 0 and 1 of the Z-axis codebook.  Note that visually, the 

codewords are grouped together in such a manner that adjacent codewords are similar. 

 There is a range of segment lengths where the clustering yields similar results.  It was 

discovered that, lengths between 2048 and 4096 samples produced similar codebooks, meaning 

that the classes of the signal are approximately constant over 4096 samples.  Here, the segment 

size selected was the largest segment where the signal’s class of behaviour remained constant, i.e. 

4096 samples.  
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Fig. B.1:  Clustering Codebook. 

 
Fig. B.2:  Euclidean Distance Between Codewords 
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 Direct analysis of the clustering in this view is quite difficult.  In order to better view the 

clustering, a plot is created to exemplify the relative similarity between the codewords.  The 

judge of similarity between codewords is done by computing the Euclidean distance between all 

the combinations of codewords and plotting these results in a colour map, as seen in Fig. B.2.  

The number of the codewords appears along both axes and the value for a given row and column 

is the Euclidean distance between the two codewords.  The distance between two codewords is 

represented in the figure as a gray scale colouring, where black corresponds to a distance of zero 

and white corresponds to a very high distance.  Note that the values along the diagonal should 

always be black because the distance between a codeword and itself is zero.  The fact that the 

diagonal appears to be white in the figure is merely an artifact of the plotting program used.  The 

groupings can be much more easily seen in this plot because the relative similarity of the 

codewords is clearly shown.  Dark sections are indicative of groups of codewords that can be 

considered to be of the same class.  Ideally, if the groupings were very distinct and separable, 

there would be several dark areas where the intersection of the dark areas on the map are lightly 

coloured, meaning that none of the codewords in a particular class are similar to the codewords in 

any other class. 

 This plot shows some separability of the classes, but it is difficult to see in print.  There 

seems to be a distinct class consisting of the codewords 0 through 5, as the Euclidean distance 

between all these codewords are very small, and the Euclidean distance between these codewords 

and others are substantially higher.  The second class appears to be between 6 and 22, but are not 

as well formed as the first class.  There appears to be a third class between the 23rd and 39th 

codewords, which leaves the codewords from 40 to 49 as the fourth class.  Referring back to Fig. 

B.1, these classes seem reasonable, as the codewords defined to be of the same class visually 

seem similar.  By identifying these clusters, the signals can be annotated by segmenting them into 

lengths of 4096, which corresponds to the codeword size and discovering to which codeword it 

corresponds.  The codeword corresponding to a given signal segment is determined by the 

“winner” neuron in the SOFM for that given input.  The class which that codeword belongs, as 

determined by the visual inspection, is then assigned to the signal segment in question.  This 

procedure is repeated for every segment in each signal.  These segments now act as examples for 

each of the classes for use in the formation of training and testing tests.  With segments of size 

4096 samples, there are 68 segments in each signal.  The segments in nine of the files are set 

aside for the training set and the segments in the other eight files are set aside for the testing set. 
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 Note that this clustering is based on the time domain, so it is sensitive to changes in such 

things as magnitude and phase shifts.  The simple similarity of signals when compared sample to 

sample is not a particularly good judgement of whether the signals have the same behaviour and 

hence, belong to the same class, but it is an objective way of performing this clustering and is 

unbiased to the techniques used in this thesis. 
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APPENDIX C 

SOURCE CODE 

 The source code for all of the programs written for the various configurations of the 

classification system developed for this thesis is provided on the attached CD.  The source code 

can be found the “src” directory.  In addition to the source code, full documentation in the form of 

Javadocs for all of the programs is supplied on the CD in the “doc” directory.
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