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This thesis introduces principled, broadly applicable, and efficient patch-based models

for data processing applications. Recently, “epitomes” were introduced as patch-based

probability models that are learned by compiling together a large number of examples of

patches from input images. This thesis describes how epitomes can be used to model video

data and a significant computational speedup is introduced that can be incorporated

into the epitome inference and learning algorithm. In the case of videos, epitomes are

estimated so as to model most of the small space-time cubes from the input data. Then,

the epitome can be used for various modelling and reconstruction tasks, of which we

show results for video super-resolution, video interpolation, and object removal. Besides

computational efficiency, an interesting advantage of the epitome as a representation is

that it can be reliably estimated even from videos with large amounts of missing data.

This ability is illustrated on the task of reconstructing the dropped frames in a video

broadcast using only the degraded video. Further, a new patch-based model is introduced,

that when applied to epitomes, accounts for the varying geometric configurations of

object features. The power of this model is illustrated on tasks such as multiple object

registration and detection and missing data interpolation, including a difficult task of

photograph relighting.
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Chapter 1

Introduction

Patch models create a representation of a category of input data by creating a set of

patches that represent all of the constituent parts of the given category of input data.

For example, a category of input data can be a particular kind of images, such as images

of human faces. A significant advantage of patch models is that each constituent part of a

category of data needs only one patch. Thus, because there will often be a large amount

of repetition within the data in a category, a patch model can be much smaller than the

data it is representing and still capture every aspect of the represented category of data.

Because of the benefits provided by patch models, the use of such models is increasing

in popularity. Specifically, patch models for images have recently seen increased use for

various low level image processing tasks [8, 11, 13, 14, 15, 19, 21, 23, 24, 30, 34, 38, 40, 42].

This thesis introduces principled, broadly applicable, and efficient patch-based models

for data processing applications. These models work across many different applications,

including novel ones, even without any domain knowledge because of their principled

probability models that require minimal parameter tuning. While this thesis shows re-

sults for a number of applications, the results are primarily to demonstrate the broad

applicability of the models, which are able to be applied to these varied tasks by opti-

mizing under their probability models. This thesis is not focused on any one particular

1



Chapter 1. Introduction 2

application, but rather, the primary contribution is the models themselves.

Recently, “epitomes” were introduced as patch-based probability models that are

learned by compiling together a large number of examples of patches from input images

[25]. The image epitome model is appealing in that its principled generative model allows

for various modelling and reconstruction tasks. While powerful, the model is lacking in

some aspects that restrict its practical usage. This thesis extends the epitome model in

several ways and proposes it as a novel patch model platform for analyzing visual data

and performing various tasks with the data.

A background on patch models and the image epitome model is given in Chapter 2.

Two of the key parameters of the epitome model are the epitome size and patch size, which

have dramatic effects on the ability of the epitome to model the data, yet prior work has

not provided any guidance in terms of selecting these parameters. In Chapter 3, these

parameters are studied using natural image statistics to gain a better understanding

of them. Learning and inference with epitome models is a computationally intensive

procedure, so in Chapter 4, a novel, efficient algorithm is introduced that dramatically

reduces the computational complexity of the patch comparisons necessary in the epitome

model. The epitome model was originally presented as a model for image data. In

Chapter 5, the model is extended to videos by using 3D patches from the video, while

also presenting a novel way to model missing data. The use of the extended model is then

applied to applications of video super-resolution, video interpolation, object removal, and

denoising.

The epitome model, like other patch models, capture local correlations between pixels

in a patch. Thus, if a patch in a first image matches well with a patch in a second image,

then a second patch in the first image that shares pixels with the first patch should

also match well to a similarly displaced second patch in the second image. Conventional

image processing applications can use these local correlations to piece or cluster together

groups of patches to form textures that can then be used to process portions of an image.
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However, conventional patch models have difficulty in capturing longer range correlations

between more distant data elements in a set of data. Because of this, conventional patch

models are not able to determine the overall context a category of data on their own.

For example, while a conventional patch model can represent small portions of an image

based on local correlations between pixels within the image that are close together, the

patch model cannot use these portions to create an entire image because it lacks the

overall context of how the image is constructed. Thus, in applications that utilize these

patch models, this context must be provided manually. Some conventional patch models

have attempted to add some degree of context information by utilizing larger patches

but this approach is not fully effective. For example, larger patches are more difficult

to match to data than smaller patches, which means that more patches are required to

represent a category of data. Because using larger patches also requires the use of more

patches, using larger patches can considerably increase the required size of a patch model.

Additionally, patch models that utilize larger patches are still not able to capture the

entire overall context of an image because, like patch models that utilize smaller patches,

they can capture only local correlations between pixels within a patch.

Thus, in view of at least the above, there exists a need in the art for a patch model

that is able to capture the entire overall context of a category of data without an undue

sacrifice in size. Such a model is introduced in Chapter 6, which is applied to both

epitomes and an image illumination manipulation application.



Chapter 2

Background

2.1 Patch Based Modeling

The technique of using small image patches to account for high-order statistics in image

and video data continues to grow in popularity in the vision community. A patch in an

image is defined as a set of neighbouring values that are presumed to be related because of

their close proximity. In video, the concept is the same except that patches take on a 3D

shape, where two of the dimensions are spatial and the third is time. The reason for the

prevalent use of patches is their ability to capture high-order statistics and model short

range dependencies in a computationally efficient manner. One of the first uses of patches

was to find corresponding points in neighboring video frames for computing optical flow.

Instead of simply matching patches, Jepson and Black introduced probabilistic patch

models that account for outliers [24]. Soon after that, Wang and Adelson showed that

patches could be used for efficient video compression [38]. In related work, “textons”

use image patches within a structured mathematical framework, to account for texture

using a patch-based representation [42]. In these cases, patches were used primarily for

analyzing image data.

More recently, patches have been used successfully for analyzing and synthesizing

4



Chapter 2. Background 5

images and videos. Patches from one part of an image have been stitched together to

synthesize new images with similar texture, or to in-paint texture into an interior region

[11, 13, 14]. This approach has also been used to fill in missing or occluded regions of

video data [40]. Image denoising has been performed by averaging patches of similar

intensity [8]. Libraries of patches derived from high-resolution images have been used for

super-resolution, both in static images and video sequences [6, 16]. Patch-based image

models have been used for the purpose of “texture transfer”, also known as “unsupervised

image analogies” [21, 34]. Patches have also been used for object and class recognition

[15, 30], tracking [23], and stereo [19].

To jointly analyze and synthesize data, patch-based probability models were intro-

duced in [25]. These models, called “epitomes”, compile patches drawn from input images

into a condensed image model that represents many of the high-order statistics in the

input image. An advantage of learning a patch-based model from the input data is that

the model is broadly applicable and can be used for a variety of inference tasks, such

as image/texture classification, in-painting, super-resolution, texture transfer, and image

segmentation [25]. Epitomes have found uses in other application areas, including speech

[28], motion capture data [29], and molecular biology [26].

2.2 Image Epitome Model

The epitome of an image is a miniature, condensed version that accurately accounts for

the interesting properties of the image. Image epitomes have a variety of data processing

applications, such as object detection, texture segmentation, and image retrieval. An

example of an epitome is shown in Fig. 2.1. The epitome is 16 times smaller than the

image, yet still contains the necessary elements to reconstruct the image.

The epitome of an image can be considered to be a generative model of image patches

taken from the image. Let there be a set of M patches taken from the original image
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(a) (b)

Figure 2.1: A 128x128 image (a) and its 32x32 epitome (b).

giving patches {Zk}
M
k=1, each containing pixels from a subset of image coordinates Sk.

The patch size need not be fixed and the image patches can overlap. Each patch Zk,

is generated by using a hidden mapping Tk that map co-ordinates from the epitome e

to the patch, as described by the Bayesian network [17] shown in Fig. 2.2. The joint

 

e 

Z1 Z2 ZM 
… 

T1 T2 TM 

Figure 2.2: The generative patch model epitome Bayesian network.

probability distribution of this network can be written as:

p({Zk, Tk}
M
k=1, e) = p(e)

M
∏

k=1

p(Tk)p(Zk|Tk, e) (2.1)

The epitome is represented by a mean and variance, e = (µ, φ) and the likelihood is

modelled as being normally distributed over the pixels, zi,k, with mean µTk(i) and variance

φTk(i):

p(Zk|Tk, e) =
∏

i∈Sk

N (zi,k;µTk(i), φTk(i)) (2.2)

Learning involves the estimation of the posterior distribution, p(Tk, e|Zk). To simplify

learning, an independence of the epitome and hidden mappings in the posterior can be
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assumed:

p({Tk}
M
k=1, e|{Zk}

M
k=1)≈ q(e)q({Tk}

M
k=1)

≈ q(e)
M
∏

k=1

q(Tk)
(2.3)

Learning is done in this model using a variational expectation maximum (EM) algo-

rithm [17] and the posterior is updated iteratively by:

q(Tk) ∝
∏

i∈Sk

N (zi,k;µTk(i), φTk(i)) (2.4)

The update equation for the epitome parameters are given by:

µj ←

∑

k

∑

i∈Sk

∑

Tk ,Tk(i)
q(Tk)zi,k

∑

k

∑

i∈Sk

∑

Tk,Tk(i)
q(Tk)

(2.5)

φj ←

∑

k

∑

i∈Sk

∑

Tk ,Tk(i)
q(Tk)(zi,k − µj)2

∑

k

∑

i∈Sk

∑

Tk,Tk(i)
q(Tk)

(2.6)

Learning under this generative patch model of the epitome is computationally domi-

nated by this approximation of the posterior distribution in the expectation, or E, step.

It can be shown that up to an additive constant, the log-posterior over the mappings can

be written as

log q(Tk) =
1

2

∑

i∈Sk

logφTk(i) −
1

2

∑

i∈Sk

(zi,k − µTk(i))
2/φTk(i) (2.7)

The first summation in this equation does not depend on the given patch, Zk and can be

computed with a low order of complexity. However, the second term is dependent on both

the image patch and the epitome. This summation is essentially the Euclidean distance

between the patch Zk and the patch in the epitome given by the mapping Tk, where

each squared difference is weighted by 1/φTk(i). In learning, it is required to compute this

distance between all Zk patches from the original image and all patches in the epitome,

a computationally intensive procedure. Inference under this model involves maximizing

(2.7) over all possible mappings, Tk.



Chapter 3

Epitome Parameters

3.1 Introduction

The epitome model requires that the epitome size and patch size be specified; however,

it provides no guidance as to the selection of these parameters. Both parameters have

a dramatic effect on the features that the epitome is able to model and hence, affect

the success of using epitome models for applications. We examine both using natural

image statistics to see how changing these parameters affect the modelling capabilities

of epitomes.

3.1.1 Epitome Size

The image epitome [25] is a compact representation of an image that has many of the

same features as the original image. One of the most significant open questions related

to epitomes is determining the size of the epitome. The epitome’s size determines the

amount of compression of the epitome and affects the results of the use of the epitome.

Fig. 3.1 shows an image and epitomes of three different sizes. Each epitome captures

as many features as it can within the available resources. The epitome is taken over a

torus, that is, the epitome is circularly wrapped along the edges in order to best make

8



Chapter 3. Epitome Parameters 9

(a) (b) (c) (d)

Figure 3.1: (a) A 223x256 image and its (b) 20x20, (c) 100x100, and (d) 200x200 epitome.

use of its resources. While the 20x20 epitome has very little real estate, it still manages

to model the basic colours in the image. Conversely, the 200x200 epitome is overly large

and is able to model nearly all the features. The interesting cases are in between. The

100x100 epitome is able to capture many of the image’s features while being nearly six

times smaller than the original image. Note how the epitome has a few flowers that are

representative of the many flowers in the original image. The epitome captures many of

the high-order statistics, but in a local manner. Entire objects and textures are intact

in the epitome and generally, interactions between features in the epitome are reflective

of those in the original image, eg. dog fur next to concrete, but global trends are not

generally maintained.

The epitome provides a unique ability to compare statistics since it itself is an image,

which is not the case with such approaches as vector quantization. Since the epitome

itself models the statistics of the image, the idea of this chapter is to study the statistics of

the image epitome and compare them to those of the original image. Natural images have

statistics that differ significantly from random images; natural image statistics generally

have heavy-tailed distributions, as opposed to Gaussian. The image epitome is far from

random, but it purposely changes the statistics as it compresses the image’s features.

This analysis of the image epitome can give us insight into the ability of the epitome

model to maintain the original image statistics and can aid in determining the size of the
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epitome.

3.1.2 Patch size

The choice of the patch size used within the epitome model has a significant affect on the

resulting epitome. The size of the patch determines what dependencies between pixels

are modeled. If the patch size is reduced to a single pixel, then the “patch” comparisons

will completely lack context and the resulting epitome would be a set of independent

values. Increasing the patch size helps to capture some of the short-range dependencies

by tying some of the epitome values together, but it only reduces, not eliminates, the

problems encountered by just using single pixels. The easiest way to incorporate longer

correlations is to simply use larger patches. The use of larger patches may however,

lead to undesired results because the patches would capture too much information. In

the extreme example of where the patch size is the same size as the entire image, the

“patch” comparison is unable to accommodate invariances such as rearranged or repeated

textures.

The size of the patch is thus a balance to capture as many dependencies as possible

without capturing irrelevant ones. However, the assumption that there is one single

patch size that is appropriate over an entire image or video may not be true because of

the large variation in visual data. In textureless areas, it would be best to have a large

patch size to capture many of the short range dependencies of the data; however, in other

areas where the features are small or there are object boundaries, the patch size must be

correspondingly small.

The typical solution to the patch size problem at least with iterative algorithms is

to use multiple patch sizes, starting with large patches and decreasing the patch size

over the course of the iterations. Large patches capture larger features and longer range

correlations, while smaller patch sizes better match local areas. While it is often not

explicitly mentioned that multiple patch sizes are used, it is often implicitly the case as
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many algorithms make use of Gaussian pyramids (see Sec. 4.4.2) for computational rea-

sons. In this framework, when executing the algorithm on blurred, sub-sampled versions

of the data with the same patch size used throughout all of the pyramid levels, a larger

patch size is essentially being used initially.

Other algorithms have made limited attempts to dynamically adapt the patch size by

subdividing the patch dyadically [25, 33]. There are some limitations to how much large

patches can accomplish, in that the correlations must be enclosed in some reasonable

rectangular region and cannot be separated by large areas. Chapter 6 describes a prin-

cipled approach that captures the desired dependencies by using relatively small patches

and explicitly modeling longer range correlations between patches.

3.2 Evaluation Criteria

Epitome parameters are dependent on the application. In general, the epitome is used

to model features in the input data for use in applications, be it compression or as a

regularizer.

The epitome of an image is interesting in that it is itself an image and thus, the ideas

of statistics of natural images can be applied. It is well established that natural images

have statistics that are significantly different than random images. Images generally

have heavy-tailed distributions and these can aid in determining the quality of epitomes.

Several statistics are explored in this chapter. There are however, a few requirements

on the statistics in order to be able to successfully compare the original image and the

epitome. The epitome aims to remove redundancy and purposely changes the overall

statistics of the image in order to reduce its size. Further, the global image statistics are

not maintained. ICA and PCA approaches were not found to be particularly suitable here

since the most significant components in the image are affected by the compression of

the epitome model and it was difficult to compare the epitome to the input image since
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the components found were not identical. The epitome does not maintain the spatial

location or geometry of features. Further, the epitome is not of the same size as the

original image. The measured statistics need to be invariant to these transformations

in order to be effective. The rest of this section describes the single pixel, derivative,

bandpass filter, and wavelet statistics used in this chapter.

3.2.1 Single pixel statistics

The easiest, yet often effective, statistic that can be computed on an image is the dis-

tribution of the pixel values in the image. Since the epitome of an image is supposed to

contain the same features as the original image, it should also have a similar distribution

of pixel values. It is not however, expected that the distributions would be identical

since the epitome compresses the image in a highly non-linear fashion by exploiting the

redundancy in the image. For example, in Fig. 3.1c, the original image contains nu-

merous flowers, but the epitome contains only a representative few. Thus, while the

epitome’s pixel distribution contains these values for the flowers, they are not in the

same proportions as in the original image.

Since the images used in this chapter have colour, it is desired to have a repre-

sentation of the pixel distribution that reflects this fact. In an analogous fashion to

one-dimensional histograms and similar to [37], colour histograms are formed by binning

the red, green, and blue components and tracking counts of pixels in each bin. Fig. 3.2

shows a schematic representation of this colour histogram. This 3D histogram is applied

to all of the statistics.

3.2.2 Derivative statistics

While it is important for the epitome to capture a similar distribution of pixel values

as the original image, another important characteristic is to model the horizontal and

vertical derivatives. With too small of an epitome, too much averaging occurs and the
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Figure 3.2: Axes of a colour histogram with the red, green, and blue components scaled

to between 0 and 1.

+ – 
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Figure 3.3: A local bandpass filter.

features are blended together leaving blurred edges and thus, the image derivatives would

not have the same distribution as the original image. An epitome should be large enough

so that it has similar feature edges as the input image and consequently, a similar distri-

bution of derivatives. 3D histograms of the image derivatives allow more of a structural

comparison than the pixel statistics while still maintaining the ability to compare the

epitome with the original image.

3.2.3 Filter statistics

A simple linear filtering is considered here of the same form as from [35]. Fig. 3.3

shows the 2x2 bandpass filter used. This particular filter passes no signal at zero spatial

frequency. Histograms of this filter’s output has been shown to have the characteristic

heavy-tail distribution.

3.2.4 Wavelet statistics

Finally, joint statistics of the pixels are examined in the wavelet domain. The 2D Haar

wavelet is shown in [22] to give interesting distributions over natural images. Fig. 3.4

shows the four Haar filters. Each 2x2 filter is applied in an non-overlapping manner. A
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Figure 3.4: Haar wavelet filters.

(a) (b) (c) (d)

Figure 3.5: (a) A 256x163 image and its (b) 20x20, (c) 100x100, and (d) 200x200 epitome.

multi-resolution analysis is achieved by recursively applying this procedure upon the low

pass filter response until a 1x1 image is obtained. Histograms of each of the horizontal,

vertical, and diagonal responses is used as a basis to evaluate the epitome.

3.3 Experiments

The experiments performed aimed to gauge the ability of the image epitome to model

the statistics of the original image and use this to aid in determining an appropriate size

of the epitome. For both the images in Fig. 3.1 and Fig. 3.5, epitomes of size 20x20 -

200x200, in increments of 10 pixels along each dimension, were computed. In all cases

patches of size 32x32, 16x16, and 8x8 were used. The larger epitomes would have had

greater spatial regularity had larger patch sizes been used, but the patches remained

fixed for all sizes for comparison purposes.

The analysis proceeds by computing the statistics from Sec. 3.2 upon the original
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Figure 3.6: Pixel value distribution comparison.

image and comparing them to those of the epitomes. The empirical colour histograms

are compared using the Kullback-Leibler divergence, which evaluates a distance measure

between two distributions, p and q,

d(p‖q) =
∑

(r,g,b)

p(r, g, b) log
p(r, g, b)

q(r, g, b)
. (3.1)

For the 3D colour histograms, the sums are taken over the bins (r, g, b). The KL-

divergence is 0 when p = q. The epitome distribution is taken to be p and the original

distribution is q so that when q(r, g, b) = 0, p(r, g, b) must also be 0 for finite distance.

Since the comparison measure is based on empirical histograms, there is some sensitivity

to the resolution of bins. It was found that the results are fairly resilient to the number

of bins and in all cases, 10 bins were used along each direction, for a total of 1000 bins.

Fig. 3.6 shows plots comparing the pixel value statistics of the epitome and those

of the original image as a function of the size of the epitome. As expected, as the

epitome becomes larger, the statistics of the epitome converges to the original image’s

distribution. For both images, gains in modelling the statistics of the image are initially

quick as the epitome increases in size, but tapers off. Such a plot can be used to determine

an appropriate size of the epitome by selecting the size that meets certain criteria, eg.

models a sufficient amount of the statistics. Some threshold could be used to act as a

knob to adjust the size of the epitome.

Similar plots for the horizontal and vertical derivatives are shown in Fig. 3.7, the
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Figure 3.7: Image derivative comparison.

bandpass filter from Sec. 3.2.3 in Fig. 3.8, and the wavelet decomposition statistics

in Fig. 3.9. The same pattern emerges that the small epitomes do not have the same

statistics as the original, but the epitome is quickly able to model the statistics as the

epitome size is increased, even when the epitome is significantly smaller than the original

image. The epitome seems to be able to model all of the measured statistics well. In

particular, the derivatives and bandpass filter response have distributions quite close to

the original, which is not too surprising since both are very local measurements and the

epitome excels at local features. The wavelet measure is like an amalgamation of both the

derivative and bandpass result, but taken in a multi-resolution fashion. Correspondingly,

the epitome also performs well with respect to the wavelet response, which shows that

while the epitome features are local, the features are also quite large and do have many

of the same trends as the original image.

There is no correct size of the epitome, as it depends on the desired use of the epitome.

For compression, there is a balance between the amount of compression and the quality of

compression. In denoising, the balance is between a large enough epitome to capture the
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Figure 3.8: Bandpass filter output comparison.
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Figure 3.9: The horizontal, vertical, and diagonal wavelet filter response comparison.

desired features, but small enough to have the noise averaged out by using the epitome

as a sort of regularizer. In some image processing applications, the trade-off is between

the number of features in the epitome and computation time since a larger epitome

requires more computations; however, in many cases, exact features are not needed, only

representative ones. Further, the size of the epitome is dependent on the image itself,

since an image with a lot of repeated patterns requires a smaller epitome than an image of

the same size with no repeated patterns. Computing one or more of the statistics shown

here provide a more systematic way to gauge the size of the epitome, rather than the

current method of hand-waving and trial and error. For example, for the dog image, it

would seem that a good balance between size and form is an epitome of size 100x100, as

all the curves show that at this level, the epitome reflects the original statistics decently.

It would also appear that the rafting image would need an epitome slightly larger, which

makes sense since there are fewer repeated patterns than in the dog image.

While not particularly useful in its current form since nearly an exhaustive search of
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epitome sizes was performed, this analysis could prove to be much more useful with a

dynamically growing epitome. The epitome could be resized during learning, i.e. start

with a small epitome and extend it along the edges, and the epitome can be made to stop

growing once either particular statistics reach a particular threshold w.r.t. the original

image or if the epitome image statistics are seen to plateau. Further, if it is seen that

either the horizontal or vertical derivatives are performing poorly, then the epitome could

be extended only by its width or height, breaking away from the square epitome sizes.

3.4 Conclusion

The epitome has been shown to be capable of modelling a number of different statistics

of the original image while maintaining a far fewer number of pixels. The statistics were

carefully chosen as the idea of the epitome had to be taken into account since the image

epitome is not meant to be identical to the original image - in fact the epitome purposely

changes the statistics of the image in order to represent its features in a smaller space.

Plots of the KL-divergence between the image epitome statistics and the input image

statistics as a function of the epitome size can act as a guide to determining the size of

the epitome since in general, the epitome is desired to accurately model the features of the

input image. This technique could prove to be very powerful when used in conjunction

with a system where the epitome is resized during learning with the image statistics

acting as a guide as to how to resize the epitome and when to stop.



Chapter 4

Efficiently Computing Epitomes

4.1 Introduction

A common operation in machine learning involves comparing patches in one image and

those in a second. This situation arises in such problems as clustering, object and feature

tracking [1], image epitome [25], texture synthesis [31], and stereo vision [20]. In these

problems, it is desired to take a patch in one image and find the patch most closely

resembling it in a second image. The metric for comparing patches varies, from Euclidean,

Minkowski, and Mahalanobis distances to correlations. It may also be the case that this

is needed to be repeated for every patch in the first image, where the patches are allowed

to overlap; this is known as the nearest neighbour problem for patches. Further, it

often arises in learning in these problems that what is needed is the actual distance

between patches and not just the closest match. Complicating matters further, in some

problems, it is beneficial to take into consideration patches of varying sizes and shapes.

The difficulty is that this problem is very computationally intensive and in this chapter, a

novel algorithm, the shifted cumulative sum algorithm is presented as an efficient solution

to this patch comparison problem.

A variety of algorithms are known for solving this patch comparison problem. This

19
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chapter does not consider approximate algorithms for solving the nearest neighbour prob-

lem [2], rather, it is restricted to algorithms that produce exact solutions. The näıve brute

force algorithm is used in this chapter as a benchmark algorithm. A slight modification

to the brute force algorithm allows the algorithm to break early for the nearest neighbour

problem. The annulus bound algorithm attempts to use a bound to limit the number

of patches that need to be considered as the nearest neighbour for a given patch. By

manipulating the distance equation, the problem can be reduced to a number of con-

volutions, which can be efficiently performed with fast Fourier transforms. KD-trees [5]

have had recent popularity, but tend to suffer in high dimensional problems such as those

involving comparison of patches containing large number of pixels and are not consid-

ered in this chapter. Finally, an algorithm is proposed called the shifted cumulative sum

algorithm that is invariant to the dimensionality of the problem (the patch size) and can

simultaneously compare patches of any size and rectangular shape.

In Sec. 4.2, algorithms for solving the patch comparison problem are described. The

shifted cumulative sum algorithm is presented as an efficient solution to this problem

in Sec. 4.3. The results of experiments performed with these algorithms on the image

epitome problem are then presented in Sec. 4.5.

4.2 Computing patch distances

In performing patch comparisons, it is often the case that squared Euclidean distances

are used. Consider an NxN image, X , where X(m) is the mth patch in the image of size

PxP . If the image is taken to be circularly wrapped at the edges, then there are N2

patches in X to be considered in the patch comparison problem. Similarly, for a second

image, Y , of size KxK, there are K2 patches, with Y (n) representing the nth patch in

Y . With this notation, the squared Euclidean distance between patch X(m) and Y (n) is
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given by:

‖X(m) − Y (n)‖2 =
P
∑

i=1

P
∑

j=1

(

X
(m)
ij − Y

(n)
ij

)2
(4.1)

In the nearest neighbour problem, (4.1) must be minimized over n for a fixed m. When

all distances between all patches are desired, (4.1) must be computed for all m and n.

In the epitome model described in Sec. 2.2, both learning and inference involve the

computation of Euclidean distances between patches in the image and patches in the

epitome because of an underlying normal distribution assumption. In learning, distances

between all patches are required. Inference under this model involves maximizing (2.7)

over all possible mappings, Tk. This computation is equivalent to determining the nearest

neighbour in the epitome for a given patch, Zk, but where a weighted Euclidean distance

is used.

Many algorithms exist for solving the patch comparison problem presented here. This

chapter investigates some of the most common algorithms, including, the brute force,

brute force with early break, annulus bound, and an algorithm using the fast Fourier

transform. The shifted cumulative sum algorithm is presented in the next section for

efficiently computing distances in patch-based models. The algorithms presented in this

chapter are applied to the epitome problem to evaluate their performance and the results

are provided in the next section.

4.2.1 Brute force

The brute force algorithm is a direct implementation of (4.1) and for the nearest neigh-

bour problem, it simply keeps track of the minimum patch distance for eachX(m). The or-

der of complexity for both patch comparison problems with this algorithm is O(N2K2P 2)

because the Euclidean distance must be computed between each patch in X and Y .
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4.2.2 Brute force with early break

The brute force with early break algorithm is a modification of the brute force algorithm

that solves the nearest neighbour problem. For nearest neighbour, only the minimum

distance is of interest, thus at any point during the algorithm, if the current partial

distance calculation is larger than the current minimum distance, then the current calcu-

lation can be stopped. As with the brute force algorithm, this algorithm has complexity

O(N2K2P 2).

4.2.3 Annulus bound

The annulus bound algorithm applies only to the nearest neighbour problem and is

based on the triangle inequality [4]. This algorithm uses bounds to reduce the number of

distance computations performed when seeking the nearest neighbour to a given point:

Each quantity in (4.2) is shown graphically in Fig. 4.1. This equation states that if a

if ‖X − Z‖ ≤ ‖X − Y ‖, then

∣

∣‖X −R‖ − ‖X − Y ‖
∣

∣ ≤ ‖Z − R‖ and

‖Z − R‖ ≤ ‖X −R‖+ ‖X − Y ‖
(4.2)
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Figure 4.1: The annulus bound.

point Z is closer to X than Y, then it lies within some bounds. These bounds form an
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annulus about the reference point, R. Typically, the reference point is chosen to be the

origin as it minimizes the number of computations required. While this bound is not

tight, depending on the data, it may eliminate many points out of consideration. As

with the previous algorithms, this algorithm has complexity O(N2K2P 2).

4.2.4 Fast Fourier transform

The fast Fourier transform (FFT) based algorithm arises from squaring out (4.1) to give:

P
∑

i=1

P
∑

j=1

(

(

X
(m)
ij

)2
− 2X

(m)
ij Y

(n)
ij +

(

Y
(n)
ij

)2
)

(4.3)

Each of these terms in this expanded square can be computed efficiently for all patches

using the FFT to perform convolutions. Each X(m) patch must be convolved with the Y

image. Each convolution has a complexity of O(K2 logK), so the overall complexity is

O(N2K2 logK).

FFT

If using a L2-norm or correlation distance measure, then the fast Fourier transform

(FFT) can be used to efficiently compute the distance between a patch, x, and all the

other patches in an image or video sequence, yi.

DL2(x,yi) =
∑

k

(xk − yik)
2 =

∑

k

x2k +
∑

k

y2ik − 2
∑

k

xkyik (4.4)

DC(x,yi) =

∑

k(xk − x̄)(yik − ȳi)

σxσyi

(4.5)

=

∑

k xkyik − ȳi
∑

k xk − x̄
∑

k yik +Kx̄ȳi
σxσyi

(4.6)

In both cases, all the terms can be pre-computed independent of which two patches are

being compared (and done efficiently using cumulative sum matrices as shown in the

following section), except this term

∑

k

xkyik (4.7)
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Because the yi patches actually come from an image, the other patch comparisons in-

volving x can be considered as just shifting the patch to a different position relative to

the image Y. This term in (4.7) for all patches yi is just a correlation, which can be

represented as a convolution and then efficiently computing using FFTs.

ρx,Y[k] = x[−k] ∗Y[k] = F−1(F(x[−k])F(Y[k])) (4.8)

= F−1(F(x[k])∗F(Y[k])) (4.9)

where ∗ represents the convolution operator, F represents the (discrete, 2D) Fourier

transform, F−1 inverse Fourier transform, and F(·)∗ the complex conjugate of the Fourier

transform, and x has been zero-padded to the size of Y. For the equivalent 1D compu-

tation, the index into the correlation matrix to obtain the proper value for (4.7) is given

by the following, where P is the size of the patch:

∑

k

xkyik = ρx,Y[P + i] (4.10)

If there are N2 patches in X, Y is of size K ×K, and the patches are of size P × P , a

brute force algorithm has a complexity of O(N2K2P 2), but using FFTs, this is reduced

to O(N2K2 logK). If however, the patches in X are sampled coarsely, and there are only

T such patches, then the computation is reduced to O(TK2 logK).

4.3 The shifted cumulative sum algorithm

A new algorithm is proposed in this section to solve the patch comparison problem.

The shifted cumulative sum (SCS) algorithm efficiently and exactly computes distances

between patches in two images by exploiting the overlapping nature of the patches and

reusing computations. This algorithm has a low order of complexity and is invariant

to the dimensionality of the patches. Additionally, patches of any size and rectangular

shape are simultaneously computed with this algorithm.
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Figure 4.2: The shifted cumulative sum (SCS) algorithm. (a) The graph that motivated

the SCS algorithm. (b) Graphical representation of the SCS algorithm.

The motivation for this algorithm is the graph shown in Fig. 4.2a. Each node in the

graph represents the squared Euclidean distance between a patch in the image X and a

patch in the second image Y . This graph shows that given the distance between patch

(1,1) in the X image, X(1,1), and patch (i,j) in the Y image, Y (i,j), the distance between

X(1,2) and Y (i,j+1) can be computed by subtracting the sum of the squared difference of

the patches along the first column and adding those along the (P+1) column. The same

can be done with the rows. With these three distances, a fourth distance can be obtained

by a combination of these along with two extra squared difference elements. This graph

can be extended for all patches inX where Y is circularly extended as required to give the

distances ‖X(m,n)−Y ((m+i)%K,(n+j)%K)‖ , m, n∈1. . .N , where % is the modulus operator.

This graph can be recreated for i, j∈1. . .K so that all the distances between patches in

the two images are computed.

The direct implementation of this graph algorithm is inefficient, but it can be made
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more efficient by considering the entire image and epitome at once rather than their

constituent patches. This new algorithm is called the shifted cumulative sum (SCS) al-

gorithm. Fig. 4.2b shows a graphical representation of the SCS algorithm. X and Y

are the images from which patches are extracted. The dashed outlines indicate matrices

obtained by circularly extending X and Y . Analogous to the graph in Fig. 4.2a, the epit-

ome is shifted such that its (i,j) element aligns with the (1,1) element in X . Subtracting

the two matrices of size (N +P −1)× (N +P −1) and performing element-wise squaring

yields the squared difference of each element in X with the shifted Y . By forming the

cumulative sum matrix, C, of this resulting matrix, patch distances can be computed as

follows:

‖X(m,n) − Y ((m+i)%K,(n+j)%K)‖2 = C(m+P ),(n+P ) − Cm,(n+P ) − C(m+P ),n + Cm,n (4.11)

As before, Y can be shifted in K2 ways. The construction of each cumulative sum

requires O((N+P )2) = O(N2) operations since N > P , yielding an overall complexity of

O(N2K2). This bound is also the lower bound for the problem of computing all distances

between the patches.

The SCS algorithm is not restricted to computing Euclidean distances, the more

general Minkowski distance can be computed by using a different exponent upon the

matrix prior to forming the cumulative sum matrix. Correlations can be performed

by replacing the subtraction with element-wise multiplication and not performing the

squaring operation. The Mahalanobis distance can also be computed with this algorithm

provided that the covariance matrix is diagonal. This distance metric is essentially a

weighted Euclidean distance and is exactly the situation encountered with the image

epitome model. To compute this distance, element-wise division by the variance matrix

is performed prior to computing the cumulative sum matrix.

The SCS algorithm is not without its faults. The algorithm requires a memory

footprint on the order of magnitude as the largest image, in that a matrix of size

(N + P − 1)x(N + P − 1) is required for the cumulative sums. The main disadvan-



Chapter 4. Efficiently Computing Epitomes 27

tage of this algorithm is that the patch comparisons are not computed in a typical order,

so additional bookkeeping may be required.

4.4 Other considerations

4.4.1 Parallel and distributed computing

Many patch comparison problems can easily be parallelized because the comparison of

one patch to a library of patches is independent of a second patch being compared to that

same library of patches. With the epitome model, both inference and learning involves

multiple patches from one image being compared with the patches in the epitome. The

comparisons for each patch can be made into an independent operation that can be

parallelized by using the batch update procedure, as opposed to the on-line one. In

this case, the sufficient statistics are aggregated together before updating the epitome

parameters.

The algorithms from Sec. 4.2 are trivially parallelized because each patch comparison

against a library of patches is done separately and can be run in different threads or on

different computers, with the sufficient statistics collected separately and combined to-

gether afterwards. The procedure is less clear with the SCS algorithm, but it nonetheless

can still very much be parallelized.

With the SCS algorithm, partial statistics for the epitome update equations are col-

lected with each shift of the cumulative sum matrices. The computational unit that can

be separated is the computations for each shift, which can be run in different threads

or on different computers. The difference here is that the partial statistics for all patch

comparisons are computed with every shift, as opposed to the full patch comparison

statistics for one patch. However, the partial statistics can just as easily be accumulated

in different computational contexts and aggregated together afterwards.
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4.4.2 Gaussian pyramids

With iterative techniques, a very popular method for computational speed-up is to use

Gaussian pyramids. This method involves blurring and subsampling the image, poten-

tially several times, and executing the algorithm involving patches on the smaller image.

The intermediate result is used as the initialization for the higher resolution image, work-

ing down the pyramid back to the original resolution of the image. Often what is done

is that the same patch size is used throughout the entire process, which effectively uses

a larger patch size with reduced computational cost in the higher levels of the pyramid.

This technique can be used in conjunction with all the algorithms in this chapter and

the computational gain is obtained by reducing the size of N and K for some iterations

of the algorithm.

4.4.3 Reducing the number of patch comparisons

Another technique for reducing computational complexity of patch comparisons is to

simply perform fewer patch comparisons. In the epitome model, not every possible patch

in the image is required to be used to update the epitome since overlapping patches

contain many of the same pixel values. This has an effect on the epitome model in terms

of what features it learns, but depending on the application, this is acceptable. The

patches extracted from the image can be done in several different ways, such as sampling

on a regular grid with varying sampling frequency or a random sampling. It has been

found that in order for the epitome model to properly learn features in an image, it is

important for the patches to overlap so that boundary effects of the patches get averaged

out.

The algorithms in Sec. 4.2 directly reduce their computational cost by the reduction in

the number of patch computations because each operation works on each patch separately

and reducing the computational complexity by reducing the N2 operations. For example,
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if the patches are sampled on a regular grid every P/2 pixels, i.e. the patches overlap by

50%, then the number of patch comparisons required are reduced to O(N2/P 2).

The SCS algorithm does not gain a significant speed-up with such patch sampling

because regardless of the number of patches used, operations on the entire O(N2) image

are necessary for all O(K2) shifts. The biggest advantage of the SCS algorithm is in shar-

ing computations across all patch comparisons, even for different patch sizes. Effectively,

with the computational complexity of O(N2K2), you then get all patch comparisons of

all patch sizes for free.

4.5 Experiments

All of the algorithms in Sec. 4.2 are able to solve the inference problem. Further, those

that also solve the learning problem, namely, the brute force, FFT, and SCS algorithms,

require the same number of computations to perform inference as it does to perform the

E step in learning, assuming that inference is done for all patches used in learning. Thus,

all the experiments for this chapter had the algorithms solve the inference problem. A

number of these experiments were performed to evaluate the various algorithms under

changes in problem parameters and the image data. In Sec. 4.5.1, a random image and

epitome were used to evaluate the algorithms on such data, that is, the epitome was not

representative of the image, which is the case in the early stages of learning. This type of

data is the worst case for some of the algorithms. In Sec. 4.5.2, a learned epitome is used

to evaluate the algorithms under conditions where patches in the image and epitome are

similar.

4.5.1 Random data experiments

In these experiments, both the image and epitome were randomly generated from uniform

distributions so the algorithms could be evaluated in the situation where the epitome does
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not resemble the image, as in the early stages of learning. Experiments were performed

to compare the algorithms with respect to changes in the image, epitome, and patch size.

An experiment was also done using multiple patch sizes simultaneously

Three separate experiments were performed, each one separately testing the effect

of the image, epitome, and patch size on the runtime of the algorithms. Plots of the

results are shown in Fig. 4.3. Experiments were repeated ten times and were averaged to

produced these plots. The small error bars associated with these plots are not shown for

clarity. Each of the algorithms scaled quadratically with the size of the image as expected

from the complexity analysis. All the algorithms except the FFT algorithm also scaled

quadratically with the size of the epitome. The FFT algorithm scaled slightly greater

as its complexity is given by O(N2K2 logK), where K is the size of the epitome. The

algorithms also behaved as expected under changes to the patch size. The FFT and SCS

algorithms were essentially invariant to the patch size, while the other algorithms scaled

quadratically.

The SCS algorithm proved to be consistently faster than the other algorithms investi-

gated in this chapter - generally faster by at least an order of magnitude. The algorithm

scales well and has a low overhead. The FFT algorithm has a low order of complexity,

but has such high overhead that it should not be considered unless the patch size is very

large. The remaining algorithms all performed nearly the same. It is not surprising that

the brute force algorithm was at times, faster than the other two, since they have some

overhead and uniform random images and epitomes do not give much opportunity to

save computations since all the patches are very similar.

In the image epitome, it is important that varying patch sizes be used in learning

[25]. Using multiple patch sizes and shapes are important in other problems since image

features are generally not square and of the same size. In performing patch compar-

isons, taking into consideration multiple patch sizes, some of the algorithms can reuse

computations. Table 4.1 compares the results of simply running the algorithms once for
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Figure 4.3: Plots showing the effect of (a) the image size, (b) the epitome size, and (c)

the patch size on the execution times of the various algorithms (d) using uniform random

images and epitomes. The base parameters are a 128x128 image, a 32x32 epitome, and

8x8 patches. In each of these plots, one of the parameters are varied while the others

are held constant at the base values. These experiments were performed using Java with

the Excelsior JET native compiler (obtained from http://www.excelsior-usa.com/) on a

Pentium IV 2 GHz computer.
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each patch size in Fig. 4.3c with the execution time of running the algorithms on the

multiple patch sizes simultaneously. Since the brute force and break early algorithms did

not reuse any computations, when multiple patch sizes were considered, their execution

times did not change over simply running them multiple times. However, the annulus

bound, FFT, and SCS algorithms improved as some computations were reused. The

SCS algorithm improved the most and performed the best since in a single iteration, all

patch distances for all patch sizes and shapes are computed simultaneously. The SCS

algorithm incurs very little overhead in incorporating varying patch sizes and shapes as

it has an order of complexity given by O(N2K2 +MK2), where M is the total number

of patches taken from the image. Conversely, in the other algorithms, very few computa-

tions can be reused when multiple patch sizes and shapes are considered and essentially

the algorithms must be repeated for each change in patch size.

Table 4.1: Experiment results with multiple patch sizes. The “Sum” column is the sum

of the execution times from Fig. 4.3c where the patch size was varied. The “Multiple”

column is the execution time of the algorithms when these patch sizes are considered

simultaneously.

Execution Time(s)

Algorithm Sum Multiple

Brute Force 546.36 544.75

Brute Break Early 584.81 584.95

Annulus Bound 674.17 585.98

FFT 675.78 643.52

SCS 17.70 6.35
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4.5.2 Learned data experiments

The annulus and break early algorithms are stochastic and are sensitive to the particular

patches used. They are most effective when the image patches have a lot of variance and

the epitome is representative of the image. To assess this, a real data experiment was

performed.

One experiment was done using the 128x128 image and 32x32 epitome from Fig. 2.1

with 8x8 patches and a second used multiple patch sizes. The results of these experiments

are shown in Table 4.2. In both experiments, the brute force, FFT, and SCS runtimes

remained the same, but the annulus and break early algorithms executed significantly

faster.

Table 4.2: Experiment results using a learned epitome of an image with patches of size

8x8 and square patches of size 1, 2, 4, 8, and 16

Execution Time(s)

Algorithm 8x8 Multiple

Brute Force 103.75 545.73

Brute Break Early 31.81 204.00

Annulus Bound 43.41 203.69

FFT 131.86 641.38

SCS 3.69 6.37

4.6 Conclusion

A novel algorithm, the shifted cumulative sum algorithm was proposed to efficiently

and exactly compute distances in patch-based models and solve the nearest neighbour

patch problem. This algorithm scales well and has a low overhead. In every experiment
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performed in this chapter, the shifted cumulative sum algorithm executed faster than

the other algorithms by at least an order of magnitude. The performance is even more

pronounced when multiple patch sizes and shapes are used for patch comparisons. With

the shifted cumulative sum algorithm, distances for all patch sizes and rectangular shapes

are computed simultaneously in a manner that is invariant to the size of the patches.

The main disadvantage of this algorithm is that the patch comparisons are not computed

in a typical order, but this generally poses a minor annoyance rather than a problem.



Chapter 5

Video Epitome

5.1 Introduction

In this chapter, we address two problems: (1) How 2D image epitomes can be extended

through time to form 3D space-time epitomes; (2) How epitomes can be compiled and ap-

plied in a computationally efficient manner and in particular, in a way that is significantly

more efficient than using a library of patches. The extension to 3D introduces several

issues due to the trade-off of space vs time and the computational issues introduced be-

cause of the great increase in the number of patches from the added time dimension.

After describing a general framework for learning video epitomes, an extension to the

epitome model is introduced to account for missing data, which allows the model to be

used for a number of disparate applications.

5.2 Video epitomes

Fig. 5.1 outlines the procedure used to learn a video epitome. Viewing the input video as

a 3D space-time volume, a large number of 3D training patches are drawn from the video.

The learning algorithm is used to compile these patches into an “epitome” – a video that

is smaller in both space and time, but contains many of the spatial and temporal patterns

35
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Figure 5.1: Learning the epitome of a video.

in the original input video. We derive the epitome learning algorithm by specifying a

generative model, which explains how the input video can be generated from the epitome

(in the opposite direction shown in the figure). The advantage of specifying a generative

model is that the model is more adaptive than a non-generative technique and it can

be used as a sub-component in other systems. Here, we introduce a 3D model of video

similar to the 2D epitome model described in [25].

We treat a video sequence as a 3D array vx,y,t of real-valued pixel measurements

(R, G, and B color channels in this chapter), with x ∈: {1, ..., Xv}, y ∈: {1, ..., Yv},

t ∈: {1, ..., Tv}. The epitome e models the video using a set of probability distribu-

tions arranged on a grid of size Xe × Ye × Te, considerably smaller then the video, i.e.,

XeYeTe ≪ XvYvTv. We view the epitome ex,y,t as a 3D array of probability distributions.

A particular pixel value v can be evaluated under any of the probability distributions in

e. For example, for the epitome coordinates xe, ye, te , the probability density at the pixel

value stored in the entry xv, yv, tv of the video is exe,ye,te(vxv,yv,tv). Since the pixel mea-

surements are continuous in nature, it is necessary to parameterize each of the epitome

distributions. In our experiments, we use a single parametric form, a three-dimensional

Gaussian distribution parameterized by a different mean and diagonal covariance matrix
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for each entry,

ex,y,t( · ) = N ( · ;µx,y,t, φx,y,t), (5.1)

where µx,y,t is the mean and φx,y,t is the covariance matrix (e.g. for RGB values). The

diagonal covariance matrix decouples color channel computations. Because of this, we

will treat the measurements vx,y,t as scalar in the following derivations, which the reader

can use to derive the full color model.

The epitome models the video by modeling 3D patches sampled from the video. These

patches can have any shape, but to keep notation simple, we will assume each patch has

linear, axis-aligned boundaries, and we think of each patch as a “cube”. Each patch is

defined in terms of the ordered set of pixel coordinates in the patch, S. For example,

a 10 × 10 × 5 video patch starting at position 8, 9 in frame 7 of the video is described

by the set S = {8, .., 17} × {9, .., 18} × {7, .., 11}. We assume the coordinates in S are

ordered, so that S(k) refers to the kth coordinate in S, e.g., S(1) = (8, 9, 7) in the above

example.

While v denotes the observed pixel values at all coordinates in the video, vS denotes

the observed pixel values in a small video cube at coordinates S, and cS denotes the

pixel values in the same cube, as predicted by the epitome. As described below, the goal

of the learning algorithm is to make the predicted video cubes similar to the observed

video cubes, i.e., cS ≈ vS . The cube cS is modeled using a set of distributions in the

epitome. We use eT to denote the set of distributions from the epitome e at coordinates T .

Assuming that the cube corresponding to T is equal in size to cube corresponding to S, we

can define a one-to-one coordinate correspondence so that the set ordering is preserved,

and the notation TS is used. The probability density evaluated using distributions at

coordinates T and predicted values cS is then eT (cS):

p(cS |TS) = eTS (cS) =

|T |
∏

k=1

eTS(k)(cS(k)). (5.2)

The above equation assumes independence of pixels given the responsible set of epitome
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distributions, with the idea of capturing correlations simply through mapping sets of

measurements to the overlapping sets of distributions.

The above equation describes the probability model for an individual cube. To obtain

a probability model for the entire input video, v, we need to address the issue of how

to account for overlapping cubes. If two sets of coordinates S and S ′ overlap, then

the corresponding cubes cS and cS′ are used to predict overlapping cubes in the input

video v, and so they should make similar predictions for overlapping pixels. The most

obvious approach to accounting for overlap is to include a constraint that the predictions

are identical in regions of overlap. However, this approach requires the introduction of

a partition function, making learning significantly more difficult. We take a different,

novel, approach [25], where we treat the cubes cS as independent even if they share

coordinates, but enforce the agreement in the overlapping regions during inference, as

described in the next section.

We now define a generative model of video sequences that is suitable for all appli-

cations described in the experimental section. The first step in the generative process

consists of generating a predicted cube cS for every possible coordinate set S in the in-

put video. This is accomplished by first randomly choosing a patch TS from the epitome

using a uniform distribution, and then generating cS using the distribution eTS (cS) de-

fined by (5.2). Then, for each pixel coordinate x, y, t in the video, all overlapping cubes

{S : (x, y, t) ∈ S} are combined to make a single prediction for the observed pixel vx,y,t

at that coordinate. This generative process is illustrated in Fig. 5.2.

During free energy minimization, we will force the predictions to agree, so the exact

form of the combination function is not important. Here, we assume that to generate

a consistent video pixel vx,y,t, the contributions from all overlapping video cubes {S :

(x, y, t) ∈ S} are averaged, and Gaussian noise with variance σ2
x,y,t is added to all three
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Figure 5.2: Generative process for a single video pixel, vx,y,t, which is represented by a dot

in the input video. The overlapping video cubes in the input video containing the pixel

x, y, t are {Si1 , . . . ,Sin}, outlined in gray in the input video. For each of these video cubes,

there is a predicted cube. These predicted cubes, {cSi1
, . . . , cSin

}, are generated from the

epitome by randomly selecting locations in the epitome {TSi1
, . . . , TSin

}, represented by

dots in the video epitome, and then generating the pixel values for the predicted cubes

under the distribution given by the epitome for these locations, eTSi1
(cSi1

), . . . , eTSin
(cSin

).

Each of these cubes cSi
, make predictions for the pixel vx,y,t and these predictions are

combined to generate a single pixel value.

channels:

p(vx,y,t|{cS : (x, y, t) ∈ S}) = N (vx,y,t;

∑

S

∑

k[S(k) = (x, y, t)]cS,k
∑

S

∑

k[S(k) = (x, y, t)]
, σ2

x,y,t)

p(v|{cS}) =
∏

x,y,t

p(vx,y,t|{cS : (x, y, t) ∈ S}), (5.3)

where [ ] is Iverson’s indicator function, i.e., [true] = 1, [false] = 0. We use the

notation cS,k for the k-th pixel in cS to emphasize that the video cubes cS are treated
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as independent, and so a pixel in the video cube cS is not uniquely defined by the global

coordinate S(k), and is instead, potentially different from the pixels in other cubes that

overlap S(k). However, as described by the above equations, for each coordinate (x, y, t),

a single final pixel vx,y,t is generated by adding noise to the average of all video cubes

overlapping with coordinate (x, y, t).

Usually, a subset of the input video patches provides accurate sufficient statistics for

learning an epitome. In practice, we randomly sample the set {S} of video cubes to be

used for learning (e.g. from the set of all video cubes of a certain size) so that with high

probability, or absolute certainty (e.g. with constrained random sampling), we would

expect to see every pixel from the input video in at least one video cube. The joint dis-

tribution over all variables can be written p(v, {cS, TS}) = p(v|{cS})
∏

S p(cS |TS)p(TS).

We often assume p(TS) is uniform for the sake of simplicity.

5.3 Learning video epitomes

Learning under this model using the expectation-maximization algorithm is not possible

because the exact posterior is intractable. To overcome this problem, a variational tech-

nique is used to approximate the posterior. Learning can be viewed as minimizing a free

energy cost function [18]:

F =
∑

S

∑

TS

∫

cS

q({TS , cS}) log
q({TS , cS})

p(v, {cS , TS})
, (5.4)

where q({TS , cS}) is the auxiliary joint probability distribution over the set of epitome

patches {TS} and the set of video cubes {cS} for all coordinate patches {S}. It turns out

that the free energy [32] bounds the log-likelihood of the input video, F ≥ − log p(v),

where p(v) =
∑

{TS}

∫

{cS}
p(v, {cS, TS}), the proof of which can be found in Sec. 5.4.

So, by optimizing F , we can maximize p(v). In fact, the closer q is to the true posterior

p({TS , cS}|v), the tighter the bound, so q is an approximation to the posterior distribu-

tion. By choosing an appropriate form for q, we can achieve two goals: Obtain an efficient
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inference and learning algorithm by decoupling variables [32]; Constrain inference and

learning to the space where overlapping cubes agree, as proposed in [25]. We choose the

q-distribution as follows:

q({TS , cS}) =
∏

S

q(TS)q(cS). (5.5)

q(TS) is a discrete distribution over all possible patch locations in the epitome shaped as

S. To enforce the overlap constraint, q(cS) is a product of Dirac functions:

q(cS) =
∏

k

δ(cS,k − νS(k)). (5.6)

As before, cS,k denotes the pixel S(k) in cube cS . νS(k) denotes the variational parameter

for the pixel S(k) = (x, y, t), which is shared by all patches S that contain the coordinate

(x, y, t), thus constraining the patches to agree in overlapping pixels.

The free energy obtained using the above q-distribution leads to a tractable iterative

learning algorithm. Setting to zero the derivatives of F w.r.t. the posterior cube colors

νx,y,t, the details of which are in Sec. 5.4, we obtain the following update rule:

νx,y,t ←

vx,y,t

σ2x,y,t
+
∑

S,k:S(k)=(x,y,t)

∑

TS
q(TS)

µTS (k)

φTS (k)

1
σ2x,y,t

+
∑

S,k:S(k)=(x,y,t)

∑

TS
q(TS)

1
φTS (k)

. (5.7)

This update sets the “hidden video” ν to a weighted combination of the input video and

the top-down prediction for the video, as given by the current epitome. The weights are

the inverse noise variances for the video and the epitome. Setting to zero the derivatives

of F w.r.t. the posterior epitome responsibilities q(TS), we obtain

q(TS)←
p(TS)eTS (νS)
∑

T p(T )eT (νS)
. (5.8)

This update is similar to computing the responsibilities of components in a mixture

of Gaussians. For each cube νS , the distribution over its position in the epitome is

proportional to the probability it was generated from each position. To perform inference

on video v when the epitome is given, these two updates can be iterated until convergence.
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If the epitome is to be learned from the video v, then the two equations above are

iterated in combination with the following two updates, obtained by setting to zero the

derivatives of F w.r.t. the epitome parameters µx,y,t and φx,y,t:

µxe,ye,te ←

∑

T ,k:T (k)=(xe,ye,te)

∑

S q(TS = T )νS(k)
∑

T ,k:T (k)=(xe,ye,te)

∑

S q(TS = T )
(5.9)

φxe,ye,te ←

∑

T ,k:T (k)=(xe,ye,te)

∑

S q(TS = T )(νS(k) − µxe,ye,te)
2

∑

T ,k:T (k)=(xe,ye,te)

∑

S q(TS = T )
. (5.10)

The first update sets the mean pixel value in the epitome to the average value of all pixel

values from video cubes νS , weighted by the probability that the cube is aligned with the

pixel in the epitome, q(TS = T ). The second update is similar, except it accounts for the

variance, not the mean value. All inference algorithms in this chapter are based on these

four equations and the derivations for these equations are shown in Sec. 5.4. In Sec. 5.5,

we address the issue of the relative dimensions of the epitome, Sec. 5.6 explains how the

above equations define different video processing applications, and in Sec. 5.7 we derive

an efficient algorithm that implements these equations.

5.4 Derivation of the video epitome learning algo-

rithm

Learning under the video epitome model is performed by using a variational expectation-

maximization algorithm, which centers around minimizing the free energy cost function

in (5.4). The free energy bounds the log-likelihood of the input video, so by optimizing

F , the log-likelihood of the input video is maximized, the proof of which can be shown
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by using Jensen’s inequality:

F =
∑

S

∑

TS

∫

cS

q({TS , cS}) log
q({TS , cS})

p(v, {cS, TS})

= −
∑

S

∑

TS

∫

cS

q({TS , cS}) log
p(v, {cS, TS})

q({TS , cS})

≥ − log
∑

S

∑

TS

∫

cS

q({TS , cS})
p(v, {cS, TS})

q({TS , cS})

= − log
∑

S

∑

TS

∫

cS

p(v, {cS, TS})

= − log p(v).

Learning progresses by iteratively updating the approximation to the true posterior,

q({TS , cS}) and the variational parameters: the hidden video, ν, and the mean and

variance of the epitome, µ and φ. The update equations for the q-distribution and the

parameters (5.7 -5.10) are obtained by setting to zero the derivatives of the free energy

cost function, the procedure of which is shown below.

The posterior epitome responsibilities q(TS) are obtained by using a Lagrange multi-
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plier during optimization to constrain q to be a proper distribution:

∂
(

λ(
∑

T q(T )− 1) + F
)

∂q(TS)
=

∂

∂q(TS)

(

λ
(

∑

T

q(T )− 1
)

+
∑

S

∑

T

∫

cS

(

∏

S

q(TS)q(cS)
)

log

∏

S q(TS)q(cS)

p(v, {cS , TS})

)

0 =
∂

∂q(TS)

(

λq(TS) + q(TS) log q(TS)

− q(TS)

∫

cS

(

∏

S

q(cS)
)

log p(v, {cS}, TS)
)

0 = λ+ log q(TS) + 1− log p(v, {νS}, TS)

q(TS) = exp(−λ− 1)p(v, {νS}, TS)

q(TS) = exp(−λ− 1)p(v|{νS})p(TS)eTS (νS)

1 =
∑

T

q(T ) = exp(−λ− 1)p(v|{νS})
∑

T

p(T )eT (νS)

exp(−λ− 1)p(v|{νS}) =
1

∑

T p(T )eT (νS)
,

by substituting this last result into the equation for q(TS) above, the following update is

obtained:

q(TS)←
p(TS)eTS (νS)
∑

T p(T )eT (νS)
.

The update equation for the posterior cube colors νi, where i = (x, y, t), are derived

by minimizing the free energy w.r.t. νi, and as such, only terms involving νi need to be
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considered,

∂F

∂νi
= −

∂

∂νi

∑

S

∑

T

∫

cS

(

∏

S

q(TS)q(cS)
)(

log p(vi|{cS}) + log p(cS |TS)
)

0 =
∂

∂νi

∑

S,k:S(k)=i

∑

TS

q(TS)
(

log p(vi|{νS}) + log eTS(k)(νS(k))
)

0 =
∂

∂νi

(

(vi − νi)
2/2σ2

i +
∑

S,k:S(k)=i

∑

TS

q(TS)(νi − µTS(k))
2/2φTS(k)

)

0 = −(vi − νi)/σ
2
i +

∑

S,k:S(k)=i

∑

TS

q(TS)(νi − µTS(k))/φTS(k),

gathering and isolating variables gives the following result:

νx,y,t ←

vx,y,t

σ2x,y,t
+
∑

S,k:S(k)=(x,y,t)

∑

TS
q(TS)

µTS (k)

φTS (k)

1
σ2x,y,t

+
∑

S,k:S(k)=(x,y,t)

∑

TS
q(TS)

1
φTS (k)

.

Optimizing for the epitome parameter µj, j = (xe, ye, te), is done in a similar manner:

∂F

∂µj
= −

∂

∂µj

∑

S

∑

T

∫

cS

(

∏

S

q(TS)q(cS)
)

log p(cS |TS)

0 =
∂

∂µj

∑

T ,k:T (k)=j

∑

S

q(TS = T ) log p(νS(k)|TS = T )

0 =
∂

∂µj

∑

T ,k:T (k)=j

∑

S

q(TS = T )(νS(k) − µj)
2/2φj

0 =
∑

T ,k:T (k)=j

∑

S

q(TS = T )(νS(k) − µj)/φj

µxe,ye,te ←

∑

T ,k:T (k)=(xe,ye,te)

∑

S q(TS = T )νS(k)
∑

T ,k:T (k)=(xe,ye,te)

∑

S q(TS = T )
.

The steps in deriving the update equation for the epitome parameter φj, where j =
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(xe, ye, te), follows the same initial steps as above:

∂F

∂φj
=

∂

∂φj

∑

T ,k:T (k)=j

∑

S

q(TS = T )
(

(νS(k) − µj)
2/2φj +

1

2
log φj

)

0 =
∑

T ,k:T (k)=j

∑

S

q(TS = T )
(

−(νS(k) − µj)
2/2φ2

j +
1

2φj

)

φxe,ye,te ←

∑

T ,k:T (k)=(xe,ye,te)

∑

S q(TS = T )(νS(k) − µxe,ye,te)
2

∑

T ,k:T (k)=(xe,ye,te)

∑

S q(TS = T )
.

5.5 Trading off space and time

The video epitome can compress a video both spatially and temporally. The size of

the epitome acts as a knob that can be tuned to adjust the amount of compression in

both space and time. The balance between space and time has a profound effect on the

resulting video epitome and how it models the video.

Fig. 5.3a shows a few frames from a sample video where a toy car drives around a

mat. On one extreme, the video epitome can emphasize spatial compression, as in Fig.

5.3b. In this circumstance, individual motion patterns are isolated and several frames in

the epitome are dedicated to each motion. Note that the epitome is taken over a torus,

that is, the epitome circularly wraps at the edges in order to maximize the use of all the

available pixels. Conversely, Fig. 5.3c shows a video epitome that greatly compresses the

time dimension of the video. With just a few frames to work with, the video epitome

models multiple motion patterns simultaneously within its frames.

Usually the mean of the epitome is initialized by sampling each pixel in the epitome

independently from a gaussian distribution with the same mean and variance as that of

the original video sequence. An inherent structure can be imposed upon the epitome

by using a more structured initialization. For example, the epitome in Fig. 5.3d has
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(a)

Frame 1 Frame 28 Frame 57 Frame 115

(b) . . . . . . . . . . . . . . .

. . . . . . . . .

(c)

(d)

Figure 5.3: Varying the dimensions of the epitome. (a) A few frames from a 208x288x115

video sequence of a toy car driving around a mat. (b) Several frames from its 60x60x80

video epitome, demonstrating an epitome that is spatially small. (c) A 208x288x5

video epitome, which is on the other extreme and significantly compresses time. (d)

A 208x288x5 video epitome initialized in a more structured manner to encourage spatial

features to align to those in the original sequence. All these epitomes contain approx-

imately the same number of pixels and are each more than 20 times smaller than the

original video. A variety of patch sizes were used in learning the epitome, varying from

two to four along the time dimension and 10x20 to 15x25 and 15x10 to 20x12 spatially.



Chapter 5. Video Epitome 48

the same dimensions and was learnt in the same manner as the epitome in Fig. 5.3c,

but the spatial structures are aligned with those in the original sequence. This effect

was accomplished by initializing each pixel in the epitome to be the median value of the

pixels across all the frames in that exact spatial location, plus a small amount of noise.

The posterior epitome responsibility, q(TS), from (5.8), then generally favors coordinates

such that the spatial locations match the original video sequence because of the high

agreement in pixel values.

These video epitomes contain approximately the same total number of pixels, but have

much different appearances. However, in all of these epitomes, the essential structural

and motion components are maintained. While the video epitome can itself be useful for

visual purposes, its true power arises when used within a larger model for performing

various video processing applications as described in the next section. When used for

a data processing application, the dimensions of the epitome should achieve a balance

between space and time so that both large spatial and temporal features can be modeled.

5.6 Epitomic video processing

First, we note that a very high variance parameter σ2
x,y,t effectively severs all the video

cubes cS from the observation vx,y,t. According to the generative model equation (5.3), an

excessive level of noise σ2
x,y,t will make the generated value vx,y,t dominated by Gaussian

noise and thus independent from the epitome generated video cubes. Because of this, the

inferred color νx,y,t shared for the coordinate (x, y, t) in all video cubes is dominated by

the epitome prediction, as seen in (5.7). When σ2
x,y,t is very low, on the other hand, (5.7)

is dominated by the observation vx,y,t. This general observation leads to several video

reconstruction applications of the inference algorithm described in the previous section,

including filling-in missing data, obstruction removal, video interpolation, denoising, and

super-resolution.
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In a large area of high variance σ2, iterating (5.7) and (5.8) will fill the inferred values

ν with the epitome generated cubes that tend to agree in the overlapping regions. To

better understand this, consider randomly initialized set of ν values. The inference step

(5.8) for the cube cS takes the current guess at νS and evaluates how likely each epitome

cube eT is to generate νS . Since the posterior epitome responsibilities share the ν values,

the (probabilistically) chosen epitome cubes tend to have a higher level of agreement in

the overlaps than if a set of random epitome cubes were selected as responsible for the

video cubes. Now, applying (5.7) will replace the initialized values ν with the average

votes from the epitome cubes deemed likely to have been generated according to q(TS).

Since the likely video cubes have a moderate level of agreement, the generated ν texture

will now be more consistent with the epitome texture. Iterating these two steps will lead

to the solution where TS are chosen so as to “quilt” a random, but consistent texture from

the epitome. Note also, that in these steps, each new estimate for a νx,y,t is a weighted

average of all epitome means µxe,ye,te weighted by both the inverse epitome variances

φxe,ye,te and the probabilities of all possible cube mappings that lead to mapping epitome

entry (xe, ye, te) to video entry (x, y, t). After several iterations, however, the q(TS)

become fairly peaked and consistent.1

If the area of high variance σ2 is surrounded by the area of low variance, then the

quilting steps described above will be automatically conditioned on satisfying the agree-

ment of the ν values in the areas of low variance. Thus, we can perform video repair

operations by setting σ2 values to be high in the areas of video that are either missing,

or considered bad, or that we simply want to replace with the texture from the epitome.

An interesting additional property of the algorithm in the previous section is that the

1For example, if the responsible epitome cube for the video cube at {1, ..., 5}×{1, ..., 5}×{1, ..., 5} is at
epitome coordinates {11, ..., 15}×{11, ..., 15}×{11, ..., 15}, then the video cube at {2, ..., 6}×{3, ..., 7}×
{4, ..., 8} will tend to be mapped to epitome coordinates {12, ..., 16}×{13, ..., 17}×{14, ..., 18}, so that the
for instance, the video coordinate (3, 4, 5) maps to the epitome coordinate (13, 14, 15) in both mappings.
When the inference procedure does not result in such translational consistency, then it usually results
in appearance consistency, i.e., each pixel tends to map to similar distributions ex,y,t in all mappings.
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epitome learning can be performed jointly with the repair operations, even when some of

the input video pixels are known to be unreliable. If the unreliable (or unwanted) pixels

are given high noise parameters σ2, then iterating all four of the equations (5.7-5.10) will

construct the epitome only from the reliable pixels. (Only the reliable pixels propagate

into ν values, which in turn define the epitome statistics in each step (5.10)).

Next, we define several video reconstruction tasks by using a given X × Y × T video

fx,y,t to form the input vx,y,t, σ
2
x,y,t to the epitome inference algorithm, with all parameters

initialized in an uninformative way. We consider the resulting set of parameters ν a video

reconstruction. In comparison to “texture quilting” techniques used in [14] for example,

epitome offers both better generalization and potentially greater computational efficiency.

The cost of learning an epitome is proportional to the product of the data size and the

epitome size, while the cost of the quilting operations is proportional to the product of the

library size and the reconstruction size. If the epitome is much smaller than the training

data, then the total cost of using the epitome as the library becomes lower than the cost

of using the entire training video as the library. Furthermore, epitomes can be used as a

set of pointers to the original training data, so that upon the computation of the posterior

q(TS), the training data cubes corresponding to the several best matching epitome cubes

TS can be searched over to find potentially even better candidates for quilting. This

offers the advantage of using all the original training cubes in quilting while still using

the computational benefit and regularization of the epitome representation.

5.6.1 Denoising

If the noise level σ2 in the given video f is known and constant, then we set v = f

and σ2
x,y,t = σ2 and iterate (5.7-5.10), starting with non-informative initialization. This

procedure effectively performs denoising by averaging similar pieces of the video. The

video epitome serves as a nexus of self-similarity estimation, and iteration is necessary

to estimate the epitome jointly with the denoising operation. The size of the epitome is
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critical in this operation. If the epitome is assumed to be very large, then, the denoising

operation may still copy a lot of noisy pixels into the epitome. On the other hand, a small

epitome will be forced to be more liberal in the definition of similarity, due to the lack

of resources to capture the diversity. Averaging many video cubes into a small epitome

may lead to excessive blurring.

If the noise level σ2 is not known, but is assumed to be uniform in the video, it can

be estimated from the data by adding the following step to the algorithm

σ2 =
1

XY T

∑

x,y,t

(νx,y,t − vx,y,t)
2, (5.11)

which follows from setting to zero the derivative of F with respect to σ2.

5.6.2 Super-resolution

Suppose that we want to increase the video resolution of the given video fx,y,t. To guide

us in this task, let us assume that we have a high resolution video hx,y,t of a similar scene

or scenes. We can then iterate (5.7-5.10) using v = h and small noise levels σ2
x,y,t = ǫ. If

h is assumed to be somewhat noisy, we can increase σ2
x,y,t or learn it as described in the

previous subsection. The resulting high resolution epitome e can now be used to iterate

only (5.7) and (5.8) on the input video defined as:

vx,y,t = fx/n,y/n,t

σ2
x,y,t = ǫ+ σ2[mod(x, n) > 0][mod(y, n) > 0], (5.12)

where ǫ is a small number and σ2 is large, and [] is an indicator function. In other words,

v is a nX × nY × T video created by nearest-neighbor resolution enhancement of f ,

but the map σ2
x,y,t labels as unreliable (noisy) the pixels which do not have coordinate

divisible by n. Iterating (5.7) and (5.8) will replace the unreliable pixels with the best

matching texture of e learned from h.

The reader can appreciate that a similar approach can be utilized to fill in the missing

“in-between” pixels even if the missing pixels are not uniformly inserted as above.
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5.6.3 Object removal and general missing data reconstruction

We now consider the general case of missing value reconstruction. Define the set of

coordinates G for which the measurements in v are considered good, and the set of

coordinatesM for which the measurements are missing, unreliable, or need to be replaced

for any reason. When learning the epitome, the set of training video cubes {S} is chosen

so that none of the cubes overlap with missing data. Then, by setting variances σ2
G = ǫ

to be small and σ2
M = σ2 to be large, the algorithm given by iterating (5.7), (5.8), (5.9),

and (5.10), will produce the reconstruction νM, quilted from the epitome which captures

the patterns in vG . For example,M could mark the spatio-temporal segment which has

an unwanted object.

5.6.4 Video interpolation

Video interpolation is a special case of the missing data problem and is also similar to

that of super-resolution. Here, however, we describe a different version of the problem,

one in which a similar video of higher temporal resolution is not given.

Formally, we can set up the problem as follows. For a sequence of frames fx,y,u we

know that some frames are missing, so that the given sequence u = 1, ..., U corresponds

to the true frames t(u). For instance, for a video interpolation task, we would have

that t = {1, 3, 5, 7, ...}. On the other hand, when a video is broadcast over the Internet,

some clients will experience dropped frames in random shorter or longer bursts. Then, t

follow a pattern like t = {1, 2, 3, 4, 5, 15, 16, 17, 18, 19, 20, 21, 29, 30, 31, 32, ...}. For video

interpolation tasks, we can define the input to the epitome algorithm as:

vx,y,t(u) = fx,y,u

σ2
x,y,t(u) = ǫ, σ2

x,y,t6=t(u) = σ2, (5.13)

with ǫ and σ2 being a small and a large variance respectively. Then equations (5.7-5.10)

are iterated to jointly learn the epitome and fill in the missing frames in the reconstruction
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ν. When the pattern in t is uniform, as in the case of video interpolation, there is a danger

that the epitome will be updated in a similar pattern, for example by decoupling the use

of odd and even frames. It is thus generally useful to constrain the epitome learning

so that this does not happen. A useful constraint is that the neighboring distributions

ex,y,t and ex,y,t+1 are similar. In our experiments we simply used potential functions Ψx,y,t

connecting neighboring frames in the epitome as

Ψx,y,t = max
xn,yn,tn∈N(x,y,t)

e−(µx,y,t−µxn,yn,tn)
2/ψ, (5.14)

where N(x, y, t) denotes a neighborhood of x, y, t outside the frame t, e.g., N(x, y, t) =

{x− δx, ..., x+ δx}×{y− δy, ..., y+ δy}×{t− 1}∪ {x− δx, ..., x+ δx}×{y− δy, ..., y+

δy}×{t+1} . These potential functions ensure that the neighboring frames are deformed

versions of one another, and define the prior

p(e) =
1

Z

∏

xe,ye,te

Ψxe,ye,te. (5.15)

By including this prior and re-evaluating the derivative of the resulting free energy2 with

respect to the mean µx,y,t we can see that (5.9) changes to

µxe,ye,te =
µx̂en,ŷen,t̂en/ψ + µ̂νxe,ye,te/φxe,ye,te

1/ψ + 1/φxe,ye,te
, (5.16)

where µ̂νxe,ye,te denotes the estimate from (5.9), and (x̂en, ŷen, t̂en) =

argmax(xen,yen,ten)∈N(xe,ye,te)Ψx,y,t.

To perform video interpolation we iterate (5.7),(5.8), (5.16), and (5.10).

Temporal interpolation and super-resolution can be combined in a straight forward

manner to derive a super-resolved smooth video from a low-resolution video if it has

enough pseudo-repeating structure and the sensor has a short spatio-temporal averaging

field.

2We ignore the normalization constant Z
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5.7 The shifted cumulative sum method

Careful study of the epitome learning rules reveals that many operations are repeated

multiple times. For example, a singe pixel vx,y,t in the video gets evaluated under ev-

ery epitome distribution exe,ye,te several times in different combinations S, T in which

(x, y, t) ∈ S and (xe, ye, te) ∈ T . Since the pixels are treated as independent, then for

each patch of coordinates S, a product of individual distributions is evaluated, or in the

log domain, a sum of elements log exe,ye,te(νx,y,t) is computed. The first observation to

make here is that since the epitome algorithm requires that many different overlapping

patches are evaluated in this way, it becomes computationally more efficient to com-

pute log exe,ye,te(νx,y,t) for all combinations of (xe, ye, te) and (x, y, t) and then sum the

appropriate elements for each S, T combination, than to apply (5.8) directly.

Furthermore, overlapping video cubes even share many of the summations of the

log exe,ye,te(νx,y,t) terms. In fact, if the overlapping cubes S used in epitome operations are

all possible cube patches of a given size (or a set of sizes), then these shared summations

can be exploited in a systematic way. In particular, consider a shifted cumulative sum

matrix

C(xs, ys, ts) =
∑

x<xs,y<ys,t<ts

log ex̂e,ŷe,t̂e(νx,y,t),

where x̂e = (xe + xes) modulus Xe and similarly for ŷe and t̂e, which is computed for

a particular offset xes, yes, tes. For the cube patch T starting at T (1) = (xes, yes, tes),

we can compute at once the epitome likelihoods for all equally shaped cubes S as a

linear combination of up to eight shifted C matrices.3 This means that for all XY T

input cube patches S of a certain size, and all Xe, Ye, Te, the computation of all epitome

cube likelihoods is computed in o(XY TXeYeTe) time regardless of the cube size |S|,

thus allowing us to work with multiple size video cubes in our experiments, from very

3For example, for T = {5, ..., 10} × {10, ..., 20} × {2}, if we set (xes, yes, tes) = (5, 10, 2), the re-
sulting shifted cumulative matrix C leads to log eT (ν[15,20]×[50,60]×[17]) = C(20, 60, 17)−C(15, 60, 17)−
C(20, 50, 17) + C(15, 50, 17).
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small cubes capturing fine details to very large ones that help strengthen the long-range

correlations in the epitome without increasing the computational complexity.

5.8 Experiments

The focus of this section is not of any one specific application, but rather the demon-

stration of the broad applicability of the model introduced, even without any domain

knowledge. The results here show what the epitome model fantasizes of the missing data

based on the data used to learn the epitome.

5.8.1 Video Super Resolution

An optical zoom in modern cameras allows the user to trade the field of view for the level

of captured detail. The user often desires to capture both the large context of the scene

and the detail in it, by first capturing a wide angle shot followed by a large zoom (as

shown in the set-up video on http://www.psi.toronto.edu/∼vincent/videoepitome.html)

and slow scene scanning at the constant zoom level (omitted in the set-up video for

brevity). We can use the approach described in Section 5.6.2 to super resolve the original

low resolution wide-angle shot f , using the epitome learnt on h, the high-resolution “scene

scanning” video captured at the higher zoom level.

In our example, the wide shot captures a large plant moving in the wind. Later,

the camera zooms in and scans the plant creating the shot used for training the high

resolution epitome. As described in Section 5.6.2, the high resolution textural and shape

features of the plant, as well as the motion patterns, are then used to compute a super-

resolved version of the wide shot. Note that the content of the wide shot is similar but

far from identical to the content of the high resolution training data. Fig. 5.4 shows

a single frame of the super-resolution result compared to bicubic interpolation, and the

web page also shows a larger super-resolution sequence of the plant.
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low-resolution bicubic interpolation epitome super-resolution

Figure 5.4: Video super resolution. (Left) A single frame from a low resolution 135x90x32

sequence. (Middle) The 360x240 bicubic interpolation of the frame. (Right) The 360x240

video epitome super-resolution result. A 325x225x8 video epitome was learnt from a

360x240x17 high resolution sequence captured when the camera physically zoomed into

a similar scene at a different point in time. Super-resolution was performed by recon-

structing the low resolution sequence with the epitome containing the features from the

high resolution sequence. Video cubes of size 75x75x4, 50x50x3, and 25x25x2 were used

during learning and reconstruction. The video of this super-resolution result is available

at http://www.psi.toronto.edu/∼vincent/videoepitome.html.

5.8.2 Reconstructing dropped frames from a video broadcast

Real-time streaming videos are becoming increasingly popular on the web. In streaming

video, often video frames are dropped because of a lack of bandwidth. Client-side recovery

of these missing frames using only the successfully received frames would produce a

smother playback to give the appearance of undropped frames.

Fig. 5.5 shows a few frames from a video sequence where the dropped frames effect

was simulated and the missing frames were then reconstructed using the video epitome

as described in Section 5.6.4. The video epitome is able to consolidate the various dis-

connected frames and assemble a comprehensible set of motion patterns in the video

sequence. In the video on the web page, we show the received frames on the left (with

freezes during the frame drops) and on the right, the video reconstruction using only the

video on the left as the epitome input. Note that due to the large number of missing
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frames, most original motion patterns have never been seen by the epitome algorithm in

their uncorrupted form anywhere in the received broadcast. Exemplar-based approaches,

while able to fill in some missing frames provided that similar motions appear elsewhere

in the video sequence, cannot handle this situation, as nearly every video cube in the

sequence contains missing data.

5.8.3 Video in-painting

Video epitomes contain the video’s basic structural and motion characteristics, which

are useful for in-painting applications. The goal of video in-painting is to fill in missing

portions of a video, which can arise with damaged films or occluding objects. The pixels

are filled by fantasizing the missing pixels in a manner that is consistent with the rest

of the video. Video in-painting can be performed with the video epitome as described in

Section 5.6.3.

Fig. 5.6 and its corresponding video on the web show the results of in-painting on a

video of a girl walking. The results here are similar to those of [40]. Part way through the

video, the girl is occluded by a fire hydrant. Removing the fire hydrant can be formulated

as a video reconstruction problem by considering these pixels as missing, learning the

video epitome only on the observed pixel values, and performing epitome inference while

setting the variances, σ2 to be high in the area occupied by the hydrant. The video

epitome is able to compress the basic walking motion into several frames and transfers

this motion pattern into the missing pixels.

5.8.4 Denoising

In Section 5.6.3, we discussed the general case of filling in arbitrary missing data in

video given only the corrupted video. Fig. 5.7 illustrates the potential power of the

video epitome. A highly corrupted video was created in which each of the RGB color

channels of each pixel was missing with 50% probability. The known bad channels for
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? 

(a)

(b)

Figure 5.5: Dropped-frames experiment. This experiment deals with the problem of

reconstructing missing frames when receiving streaming video over the Internet. The

problem is illustrated by the diagram at the top, where gray indicates frames that were

dropped during transmission. (a) Several frames from the sequence in which four of

the frames are missing. Most video cubes from the sequence contain missing frames, so

they cannot simply be stitched together to fill in the missing frames as with exemplar-

based methods. (b) The reconstructed missing frames using the video epitome of the

sequence with dropped frames. The arrival time of the frames in this 90x100x39 sequence

was modeled as a discrete time Bernoulli process whereby the inter-arrival time of the

frames was governed by a geometric distribution. Frames were expected to arrive in

each time slot and any unfilled time slots between arrived frames were considered to be

dropped frames. The mean number of missing frames between arrived frames was one.

A 90x100x13 video epitome was learnt from only the non-dropped frames using video

patches of size 63x70x6, and 36x40x5, and 30x30x4. This video sequence is available at

http://www.psi.toronto.edu/∼vincent/videoepitome.html.
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(a)

(b)

(c)

Figure 5.6: Video in-painting experiment using the video epitome. (a) Several

frames from a 115x83x53 video. (b) Removal of the fire hydrant from the video

by considering these pixels as missing. (c) In-painted frames using a 30x30x15 epit-

ome with 20x20x5, 15x15x4, 10x10x3, and 5x5x2 video cubes. Video available at

http://www.psi.toronto.edu/∼vincent/videoepitome.html.

… … 
Video epitome 

Corrupted video 
Recovered video 

Figure 5.7: Missing channels experiment. A 115x83x24 corrupted video sequence where

each of the RGB color channels of each pixel was missing with 50% probability was

recovered by learning its video epitome and filling in the missing values using the epitome.

The 40x40x12 epitome was learnt from only the observed values and does not contain

missing data because of the consolidation of the 20x20x4, 15x15x3, and 10x10x2 video

cubes from the video into the smaller video epitome during learning. Video available at

http://www.psi.toronto.edu/∼vincent/videoepitome.html.

each pixel were marked by high noise variances σ2. The video was then given to the

epitome learning algorithm and then reconstructed by iterating (5.7-5.10). Despite high

levels of corruption, the repetitive motion in the video helped the epitome learn a clean

representation and reconstruct the video ν. This video is available on the web page.
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5.9 Conclusion

An epitome represents many of the high-order statistics in array data using a more com-

pact array, and is amenable to faster searching and better generalization, compared to

patch libraries. Here, we developed an efficient algorithm for learning video epitomes and

performing various inference tasks. We illustrated some of the applications of video epit-

omes, including video enhancement and editing tasks. Videos demonstrating a variety of

applications are available at http://www.psi.toronto.edu/∼vincent/videoepitome.html.

In comparison to reconstruction techniques based on a library of known data patches,

an advantage of epitomes is that they can be trained directly on corrupted or degraded

data, as long as the data is repetitive. Video tends to be highly redundant and is thus

quite well-suited to analysis using epitomes. Despite the fact that the video epitome

model described in this chapter was only made invariant to translations, it is able to

accommodate minor variances in rotation, scale, illumination, colour, and occlusions.

Specifically adapting the mapping function to account for these other transformations

would allow the model to take advantage of even more redundancies in videos. Because

epitomes provide a representation that retains the natural flow of the input data, and

offer significant computational and statistical advantages over patch libraries, we believe

they will find many uses in data analysis and computer vision.
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Long Range Correlations

6.1 Introduction

Patches have been used to capture local correlations between pixels in various low-level

vision tasks, with perhaps the most notable early example in [16]. To capture correlations

that span a longer range, larger patches can be used, though this has adverse side-effects,

including for example, increased difficulty in patch matching. When multiple patches

from different images are matched there are many correlations between the mapping

pairs. If two patches match in two images, then it is likely that shifting both patches

one pixel in the same direction also leads to a matched pair, since there is a significant

amount of overlap between the pixels in the patches. Such local coherence ideas have

been used in [3, 40]. In the case of videos and 3D patches, local correlations are even

stronger because of the added time dimension.

Visual data also exhibits strong long range correlations in images which can relate

patches that do not have any pixels in common. Elastic matching, eg. [7], has been used

in the past to register image pairs by leveraging the fact that mappings are generally

smooth between images to overcome erroneous correspondences due to noise or lack of

identifying features. By reducing the analysis to a subset of patches with relatively high

61
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Ti

Si

Figure 6.1: The epitome of three car images learnt using long-range patch correla-

tions. The epitome ends up being a merge of the three cars, with both the front

and back of the car reaching a compromise between the different shapes of the cars.

Also interesting to note is how the epitome merges the three backgrounds. The patch

indicated by Si in the top-left image is connected to several other randomly chosen

patches in the image, to which, relative patch distances should be generally maintained

during patch matching to the epitome. The corresponding patch in the epitome is

shown as Ti and the matching is constrained by the matches for the patches connected

to Si. A video illustrating this patch correspondence during learning is available at

http://www.psi.toronto.edu/∼vincent/patchcorr.html.

mutual distances, it is possible to produce elastic matching of large structures using

a small number of image features. This is achieved by assuming that relative offsets

of image features are only slightly perturbed between two images. Relative positions

of features are also useful for object recognition. For example, in constellation models

[9, 39], the relative locations of a small number of detected features from an image are
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used to facilitate object recognition. Elastic image matching, which only some of its

many forms have been mentioned here, has been one of the most used tools in vision.

In this chapter, we are concerned with the use of similar elastic constraints, but

with the goal of modeling correlations among the mappings of all data patches to a

common learned representation of a category of images (Fig. 6.1), eg. an epitome [10, 25,

27]. Thus, the model we propose captures the full probability distribution of the data,

making it possible to mine the long-range image correlations in various inference tasks,

including data registration, data likelihood computation (for tasks such as classification

or detection), and missing data interpolation.

The focus of this chapter is on this model and we demonstrate its broad applicability

on several tasks. For example, one of the tasks we can perform using inference in our

model is the simulation of illumination changes on an object in a single photograph. The

illumination training data consists of video sequences of other static objects and varying

illumination angles, and the patches mapped to a common epitome are three-dimensional.

Our model estimates the appearance and mapping constraints through space and time

among the video cubes in the training data and then estimates a video sequence which

satisfies these constraints and whose central frame is equal to the given photograph. This

creates plausible illumination changes on the object in the photograph.

Previously, such image relighting tasks typically required an expensive, brute force,

hardware solution as in [12], where the subject sits in a dome and photos of the subject

are taken from many different angles, from which any illumination can be reconstructed

by taking combinations of these images. There are several limitations to this approach

including the a priori knowledge of the desired illumination change, so deceased indi-

viduals cannot be re-lit; the subject must remain still and be tolerant to strobe lights;

and the subject must fit in the dome, so entire scenes cannot be re-lit. Less hardware-

dependent and more computation-oriented alternatives to re-lighting an image or video

sequence have also proposed. For instance, generic face surface geometry and reflectance
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models have been used for re-lighting faces [36, 41]. However, once the problem changes

to re-lighting something other than a human face, such as an animal, a piece of cloth, or

an entire scene, these approaches become more difficult to follow, as they need object-

specific surface geometry models. With the exception of a small number of object cate-

gories (perhaps only human faces), such models are fairly rare. The richness of the 3-D

face modeling literature is the best indication of the difficulty of acquiring such models.

The examples of relighting we show in this chapter are example-based - given a small

number of examples (sometimes even just one) of how the image of an object changes

with smooth variation of illumination angles, we can construct plausible similar changes

on another similar object. This removes the need for full modeling of the surface geome-

try of the objects. Instead, the correlations in the patches form the training data provide

sufficient constraints to infer plausible image changes due to illumination angle changes.

In addition to face and cloth photograph-relighting, we show results on simulating a

walk through a hallway given one photograph of a hallway, and learning epitomes of cars

and faces, all using the same trainable model of data patches.

6.2 Flexible patch configurations

As discussed in the introduction, the issue of varying geometric configurations of object

features has repeatedly been encountered in vision research. In this chapter we are

particularly concerned with how this variability can be accounted for in patch models

that describe learnable probability density functions of images. In particular, as described

in Fig. 6.1, we construct an epitome model in which patches from different locations in

the image have correlated mappings to the epitome locations. While the discussion in

this section is limited to 2-D images for concreteness, it is trivial to extend these ideas

to N-D structures.

The original epitome model [25] proposes that a set of pixels from image z with indices



Chapter 6. Long Range Correlations 65

in the set S, i.e., the set zS = {zu|u ∈ S}
1, can be described by specific individual

probability distributions taken from epitome (e) locations in the set T :

p(zS |eT ) =
∏

k

p(zS(k)|eT (k)), (6.1)

or simply,

p(zS |eT ) =
∏

k

eT (k)(zS(k)), (6.2)

where it is assumed that the sets S and T are ordered and of equal sizes2, and the k-th

index in one set corresponds to the k-th index in the other. Given a number of these

correspondences between different subsets of pixels in training images Si and subsets of

epitome locations Ti, learning an optimal epitome reduces to assembling the required

sufficient statistics.

The rules of establishing pixel correspondence (choosing various image locations S and

their corresponding epitome locations T ) are left general in these early papers, although

particular applications usually considered regular small patches of image pixels to form

various sets Si, and the same size patches in the epitome. This made the search for

optimal mapping of each image patch linear in the size of the epitome, as effectively, only

the position of the epitome patch is required to fully describe the mapping regardless of

the patch size. This choice also limited the spatial extent in which image correlations are

nicely captured by the epitome to several patch sizes. Due to the overlap of patches both

in the input image(s) and in the epitome, the textures that form in the epitome upon

learning capture structures larger than the patch sizes, but often much smaller than the

object size.

The basic formulation of the model allows the pixel coordinates in Si to come from

disconnected parts of the image, and the mapping rules that limit the space of possible

1Boldcase u and v represent 2D indices describing image coordinates, i.e., u = (x, y)
2For example, one way to limit the space of allowed correspondence is to consider subsets Si in the

data that are rectangular patches of a certain size, i.e., Si = {u = (x, y)|Xi ≤ x < Xi+δ, Yi ≤ y < Yi+δ}
and the corresponding epitome subsets T are defined to also be rectangular patches starting at some
epitome location Xj, Yj .
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sets of epitome coordinates T to include rotation, shearing, and other transformations.

This would allow capturing more complex geometric changes that span a larger spatial

extent in the image. To the best of our knowledge, while the inclusion of more sophis-

ticated geometric transformations has been studied before, the use of non-contiguous

patches has not been investigated due to the explosion of the numbers of possible image

subsets Si to be considered. Recently, patches of arbitrary (and inferred) shape have been

used in epitome structures dubbed jigsaws [27], but these patches are still contiguous and

do not capture global correlations in images. Without directly capturing longer range

correlations in the data, be it images, videos, or other ordered datasets, the epitome

models will fail to capture global scale phenomena of the objects they were trained on.

To resolve this problem, instead of using non-contiguous patches to capture within

each single mapping, S → T , the correlations in distant parts of the image, we propose

to model correlations among different mappings, Si → Ti. This allows us to capture long-

range correlations in the image while still having relatively simple individual patches and

mappings.

6.2.1 The mapping field

The use of simple rectangular patches to represent data has significant computational

advantages, especially for higher dimensional data, as discussed, for example, in [10].

Rectangular patches allow the use of fast Fourier transform tricks and efficient image

correlation computations necessary to efficiently perform otherwise very expensive com-

putations. Smaller patches of other shapes can be simulated using the masking variables

[25], or, with a higher computational cost, but some other benefits, using jigsaw mod-

els [27]. Different patches of data coordinates Si have the associated mapped epitome

coordinates Ti. The original epitome model assumed independence of variables Ti, as

the patch overlap naturally enforced the appropriate agreements in mappings of nearby

patches. Similar local agreement is enforced in the jigsaw model in a way that allows
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hi hj
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Figure 6.2: Factor graph of the long-range correlations patch model.

patches to be arbitrarily shaped. In the model we propose in this chapter, we capture

the constraints on the mappings Ti and Tj of distant patches Si and Sj through agree-

ment factors gi,j = g(Ti, Tj ,Si,Sj) (Fig. 6.2), which have high value if the mappings Ti, Tj

keep a similar geometric configuration as Si, Sj . The factors hi correspond to the usual

epitome likelihoods eg. hi = eTi(Si). Intuitively, this is represented in Fig. 6.1, where

the patches connected to Si constrain its matching to Ti as it is desirable not only for

the two patches to be similar, but also to maintain the relative locations of the matching

patches. The likelihood of the entire image is proportional to the product of all factors

(only some of which are shown in Fig. 6.2),

p(zS1 , zS2, ..., zSI
) ∝

I
∏

i=1

hi
∏

j∈Ni

gi,j, (6.3)

where I is the total number of image patches considered, and Ni represents the set of

data patches j connected to patch i in the model. While this set can be arbitrary for

each patch i, in our experiments we chose a particular (but randomly chosen) relative

configuration and use it for all patches in the image.

There is a number of ways to parameterize the relative geometric configuration of

the patches, and some alternatives we have not tested will be discussed later, but first,

we go over the choice of factors g and long-range interaction neighborhoods N in our

experiments. The basic property that factors g are enforcing is that the relative positions

of the coordinates in Si, Sj are preserved in the mappings Ti, Tj , i.e., Si(k) − Sj(k) ≈
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Ti(k)− Tj(k)
3. If each patch is kept rectangular, this is equivalent to S̄i − S̄j ≈ T̄i − T̄j ,

where bar denotes taking the mean of the coordinates in the set, since ∆S = Si(k)−Sj(k)

is constant for all elements, and the same is true for ∆T . If the mapping inference enforces

a preference to keeping the relative positions of the chosen patches, the epitomes would

reflect longer-range correlations in images. However, the images often undergo geometric

deformations due to angle of view changes and object deformations, which can violate

some of these constraints, and to account for that, we can allow for different variances

on the Gaussians that enforce them, gi,j = N (T̄i − T̄j; S̄i − S̄j,Φi,j). In this way, the

mappings Sj → Tj for the neighbors of Si, i.e., j ∈ Ni will effect the mapping Si → Ti.

In our experiments, the neighborhood Ni consists of K patch (rather than pixel)

indices (usually 10-20). There are roughly as many different rectangular patches as there

are pixels in the image, since the patch can be centered at any pixel except those close

to image boundaries. Thus patches can be indexed by their central pixels. To choose a

neighborhood for each patch Si, where i now represents a 2-D coordinate of the central

pixel, we first choose K random 2-D offsets ∆k up to some maximal distance d (eg. half

or quarter of the image size), i.e., ||∆k|| ≤ d for all k, and define Ni as an ordered set

with Ni(k) = i + ∆k. In other words, to construct the field of mapping constraints,

each patch i is connected to interacting neighbors in the same relative configuration, but

the mapped epitome patches Tj, j ∈ Ni may not follow fixed configurations due to the

uncertainty captured in the 2-D covariance matrix Φi,j in the Gaussians gi,j.

The K Gaussians gi,j for some i should have linked parameters, since they should all

depend on the local deformation at i. Furthermore, the assumption S̄i − S̄j ≈ T̄i − T̄j is

too rigid, both because the possible squishing of the texture in the epitome and because

of the local image foreshortening and object deformations due to viewing angle changes

3While this could be achieved by simply merging the patches Si and Sj into one non-contiguous patch
Sand imposing constraints on the epitome mapping T , the patches in the epitome may no longer have a
fixed shape, thus making it impossible to use cumulative sum and other computational tricks to perform
efficient computation of the patch likelihoods hi for all possible patches Ti.
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and other effects. To account for this, we introduce a hidden transformation Ai which

affects each of the patch links, i.e., factors gi,j,

gi,j = N (T̄i − T̄j ;Ai(S̄i − S̄j),Φi,j). (6.4)

In our experiments this transformation is linear and thus Ai is a matrix. The prior on

this matrix can be included so as to prefer identity (not shown in Fig. 6.2). When, as in

our experiments, each patch is connected to a large number of interacting neighbors (Ni

contains a sufficiently large number of patches), Ai is inferrable. In our experiments we

link parameters Φi,j for different patches,

Φm,Nm(k) = Φn,Nn(k) = Φk. (6.5)

In other words the links in the same relative configuration (the same ∆k) share the same

covariance structure. This allows learning the relative extent of the image correlations

– the links that tend to lead to low correlation (eg. because they reach too far in some

direction) will simply have high variance captured in Φk.

As in some previous patch models, to account for image intensity changes (darkening

or brightening of the patches, for example), we add two scalar hidden variables a, b that

control the patch contrast in the factors hi:

hi = eTi(aizSi
+ bi). (6.6)

6.3 Mapping inference

Next we discuss inference in the epitome model with long-range patch correlations de-

fined by (6.3), (6.4), (6.5) and (6.6). This model is a Markov random field (but unlike

in most vision applications with more frequent and further-reaching links), with the

epitome as the representation of the observation likelihoods. A number of techniques

for inference in MRFs have been studied in the past, and most of them can be adopted
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here, including sampling, loopy belief propagation, and variational techniques (for review

and some comparisons of probabilistic inference techniques see [18]). We have experi-

mented with a simple variational technique4, which factorizes the posterior distribution

as Q =
∏

i q(Ai)q(ai, bi|Ti)q(Ti) and further assumes that q(ai, bi|Ti) and q(Ai) are delta

functions. The resulting update rules are:

q(Ti) ∝ h̃i(Ti)
∑

Tj |j∈Ni

∏

j∈Ni

q(Tj)gi,j(Ti, Tj , Ãi),

h̃i(Ti) = argmax
a,b

hi(Ti, a, b), (6.7)

Ãi = argmax
Ai

∑

Ti

q(Ti)
∑

Tj |j∈Ni

∏

j∈Ni

q(Tj)gi,j(Ti, Tj, Ãi).

These equations do not update the belief q(Ti) about where each patch Si should map only

according to the epitome likelihoods for different possible patches Ti as in (2.3). Instead

they take into account the probable mappings of the patches in Ni to skew the inference

so as to have these patches in the proper geometric configuration with Ti. Using the best

matching contrast parameters a, b also allows the inference to be somewhat invariant to

illumination changes. Finally, Ãi captures shearing of the image as it affects patch Si.

For a diagonal transformation Ai, with diagonal elements Aim , the update equation is

given by

Ãim =

∑

j∈Ni

∑

Ti

∑

Tj
q(Ti)q(Tj)(T̄im − T̄jm)(S̄im − S̄jm)
∑

j∈Ni
(S̄im − S̄jm)2

. (6.8)

Depending on the strength of the links defined by Φk,this shearing may be only local

or more global. The update equation to account for uncertainties in the correlation links

is given by

Φk =

∑

i,j|j∈Ni

∑

Ti

∑

Tj
q(Ti)q(Tj)D2

ij
∑

i,j|j∈Ni
1

, (6.9)

4Due to a large number of links, belief propagation yields essentially equivalent messages.
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where

Dij = T̄i − T̄j − Ai(S̄i − S̄j).

Note that the epitome e involved in computation of hi can either be learned or preset.

For instance, in Fig. 6.5 we simply use an example of a video which we feel sufficiently

epitomizes the class of data of interest and define the mean of the epitome e to be equal to

that video, and use a small uniform value for all epitome variance. Then, the inference

rules above, when iterated can be used to map other videos to it. To also learn the

epitome from data, the original update rules, eg. (2.5, 2.6), only need to be changed

slightly to account for the contrast variables and reverse the scaling and addition used

during matching:

µu =

∑

i

∑

T q(Ti = T )
∑

k[u = T (k)](zSi(k) − bi)/ai
∑

i

∑

T q(Ti = T )
∑

k[u = T (k)]
. (6.10)

As in the previous work, the epitome update is iterated with the inference equations

above.

6.4 Interpolating missing data

In (6.3) we model a selection of data patches. In our experiments, the image patches

we considered are all image or video patches of a certain size. In many applications, a

model of individual pixels is required, and the fact that each pixel belongs to several

patches needs to be resolved. We follow the recipe from [10] and [25] – the patches zS

are in a hidden image, while the observed image, at each pixel contains the average of

appropriate pixels in all patches zS that overlap it. The patch agreements are enforced

in the inference distribution, rather than in the model. In our case, to the factors h and

g described above, we add an extra factor fu per pixel xu of the observed image x,

fu = N (xu;

∑

i

∑

k[u = Si(k)]zSi(k)
∑

i

∑

k[u = Si(k)]
, ρ2u), (6.11)
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with the total image likelihood proportional to

p(x) ∝
(

∏

u

fu
)(

∏

i

hi
∏

j

gi,j
)

. (6.12)

The variational posterior is factorized as Q =
∏

u q(zu)
∏

i q(Ai)q(ai, bi|Ti)q(Ti), with a

single part of the posterior q(zu) = δ(zu − νu) for each particular pixel zu in the hidden

image, regardless of how many patches zSi
it may be in. This enforces the agreement of

overlapping patches in the posterior distribution over all hidden variables. The posterior,

as well as model parameters are estimated by minimizing the free energy

F =
∑

hiddens

Q log

(
∏

u fu
)(
∏

i hi
∏

j gi,j
)

Q
. (6.13)

Not only does the model describe the likelihood5 of image pixels rather than patches

(still capturing a number of pixel correlations), but it also makes possible the inference of

hidden pixels zu. Inferring these hidden pixels has various applications such as denoising

and superresolution as in [10], which are all achieved by setting some of the variances

ρ2u to large values. However, the inference procedure in our model will involve enforcing

long-range correlations in the image. While this property should be helpful in previous

applications of patch models, even more ambitious tasks can be attempted – the ones for

which accounting for long range correlations in the data is crucial. Some of these tasks

will be illustrated in the experimental section.

The inference of the hidden image pixels zu reduces to estimation of parameters νu:

νu =

xu
ρ2
u

+
∑

i,k|Si(k)=u q(Ti)
µTi(k)
σ2
Ti(k)

1
ρ2
u

+
∑

i,k|Si(k)=u q(Ti)
1

σ2
Ti(k)

, (6.14)

which balances the votes from different epitome patches with the observed value for the

pixel based on the ratio of appropriate noise or uncertainty parameters (variances σ2 for

epitome ‘votes’ and ρ2 for the votes from the observed image), as well as the uncertainties

5Strictly speaking, the model is not normalized because of the factors g, but the same inference
procedures can still be used; the imbalance due to g factors is uniformly distributed over the data, due
to the fixed relative configuration of the neighborhoods Ni
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about mapping q(Ti). The other update rules (6.7) remain the same, except that instead

of patches zSi
, patches of variational hidden image means νSi

are used to compute hi.

We have performed a number of experiments on halucinating plausible guesses for

large chunks of missing data, by setting variances ρ2u for the missing data to high values.

For instance, in one of the experiments, the data x is assumed to be a video of a hallway

walk-through (with all the motion due to the cameraman’s walking), but only a single

frame is given. In this case, the coordinates u = (x, y, t) are 3D, the patches Si are all

video cubes of a certain size, and the variances ρ2x,y,t are set to a high value everywhere

except when t = 0, where it is set to a small value, thus overpowering the epitome

predictions. For the epitome e we simply used a sequence of a walk-through of another

hallway to be its mean, and set the epitome variances to a same small value everywhere

(training the epitome on a larger number of such sequences would probably lead to better

results), and then iteratively applied equations (6.7, 6.14) until convergence. After each

application of these equations, the inferred video ν resembles the original video, which

we used as an epitome, more and more, both in terms of the local video texture resulting

from quilting patches eT and in terms of how the quilting of such patches in one part

of the video volume influences the choice of the patches in another, distant, part of the

volume. Thus, the resulting sequence νx,y,t contains the given photograph as its frame 0,

since the low variances ρ2x,y,t=0 require it, but from t = −7 to t = 7 it adds new frames

that agree with frame 0 so that the sequence contains the motion of the hall’s walls out

of the field of view, zooming motion of the texture close to the center of the field of view,

as well as the same rocking motion of the human walk, present in the epitomic example.

In another experiment, the data and epitome coordinates are x, y, θ, where θ is a

illumination angle, and the same procedure is used to perform single-example photograph

relighting. Due to complex long-range correlations in these two types of data, inference

of missing data using traditional patch quilting would be impossible.
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6.5 Experiments

6.5.1 Epitome learning

In the original image epitome, a variety of patch sizes could be used during learning.

Using large patches it is possible to capture large features, but because larger image

structures also undergo larger deformations, the use of large patches also introduces

significant amount of blurring. Small patches, on the other hand can capture repeating

details that are easier to register, but the epitomes tend to have smaller structures and

more discontinuities. When learning epitomes with long-range patch correlations, it is

possible to capture large image structures using smaller patches, and thus achieve sharper

epitomes and higher epitome likelihoods. The large epitome structures are the result of a

combination of the global correlations provided by the mapping field we introduce in this

chapter, and the local correlations provided simply by patch overlaps, as in the original

epitome.

The epitome shown in Fig. 6.1 was learnt from just three images of cars. The mean

of the three images was used to initialize the epitome and after learning, the resulting

epitome is a morph of the three cars. No alignment of the images was done beforehand.

The long-range patch correlations caused the patches from these three cars to essentially

agree upon an alignment of their features. The car images and the epitome all have a

resolution of 120x90 pixels, and patches of size 10x10 with 10 random correlation links

were used during learning. An example of these patch correlation links is outlined on

top of the image on the left. The patch, Si is randomly linked to a couple other patches,

such that their corresponding epitome mappings Ti keep a similar spatial configuration.

Fig. 6.3 illustrates the impact of long-range patch correlations in learning the epitome.

The face epitome from [25] is shown on the left. Continuing the learning procedure

for just a few more iterations, but including the constraints g on patch mappings by

iterating (6.7, 6.10), results in the epitome on the right. The contiguous features in the
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Figure 6.3: The effect of long-range patch correlations in learning the epitome. Start-

ing with a traditional epitome on the left, conducting a few iterations of learning with

patch correlations leads to the epitome on the right, which starts to show larger image

structures, including a sharp whole prototypical face to which many of the images are

mapped.

new epitome are significantly larger, with a prototypical sharp face emerging near the

center that does not look like any one single face in the database.

We can also examine where patches in an image match in the epitome. With the

patch correlation constraints, we expect patches of a human face to match to contiguous

areas of the epitome, as opposed to patches scattered all around the epitome. But, when

a non-human face is matched with the epitome, we expect constraints to be violated and

patches would not match to the epitome in the same manner as would a human face.

To show where patches in an image match in the epitome, the denominator in (6.10)

can be used as a transparency mask on the epitome as shown in Fig. 6.4. The human

face on the left causes a large contiguous area of the epitome to be used frequently. The

large forehead of the subject also results in the high use of a bright patch above the

main face area of the epitome. The middle image shows a digitally created image of a

cyclops. The usage of the bottom half of the prototypical face in the epitome is normal,
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Figure 6.4: Face mapping. Three images of potential human faces are shown along

the top with the corresponding matched areas of the epitome on the right from Fig. 6.3

below each one. The epitome is ‘lit-up’ proportional to how well the patches in each of

the images matches to areas in the epitome.

but only one side of the upper half of the face is needed. Without modeling long-range

correlations in epitome mappings, we would expect that both eyes would be used with

equal probability, but because of these modeling constraints, for the most part, only half

of the face in the epitome is used. Finally, an image of a dog is shown on the right. As

it does not resemble a human face, the patch usage area in the epitome is quite deviant

from that of a human face. Classification can be performed by computing the likelihood

under the epitome for each of these images and the images shown have been ordered

according to their likelihood with the human face on the left with the highest likelihood

of the three.
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6.5.2 Image illumination manipulation

It is often desired to change the illumination of a subject in order for it to appear

consistent with other elements of a differently illuminated scene. Information from a

training sequence can be leveraged and used to interpolate changes in illumination of an

image. Fig. 6.5 shows an example. The top row shows several frames of a video sequence

exhibiting a change in illumination. The single test image shown in the middle is then

extrapolated to mimic the illumination change of the training sequence and the frames

corresponding to those in the training set are shown.

The illumination change is transferred onto the image through patch matching be-

tween the image and the video sequence and subsequent transferral of the illumination

change that the patches exhibit in the adjacent frames of the training sequence via the 3D

nature of the patches. The result can then grow outwards in an iterative fashion. Because

this is an extrapolation from a single image, it is difficult, especially in frames far from

the original seed, to maintain the coherence of the patch matching. Using long-range

correlations between the patches is essential in maintaining consistency in the results.

The shadows in Fig. 6.5 move in a plausible fashion. Patches of size 10x10x5 were used

with 30 correlation links.

The second face illumination example shown in Fig. 6.6 shows a wider range of illu-

mination change over a different subject. The first row of results serves to demonstrate

the need for the long-range correlations as that is the result without the correlation links,

while the sequence in the bottom row incorporate such links.

In the final illumination experiment shown in Fig. 6.7, an analogous operation was

performed with a rippled piece of clothing. The geometry of folded cloth is very complex

and would be difficult to model. Again, the illumination change is transferred from

a sample video sequence in order to extrapolate the change of illumination angle of the

source lighting for a single image. The complexity of the subject posed a difficult problem,

but even then, the shadows can be seen moving in a plausible manner.
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Training Set

Test Image

Figure 6.5: Changing the illumination of a face. Given a single test image and a guiding

training set, a synthesized sequence is generated that reflects a changing illumination of

the single image by iterating (6.7, 6.8, 6.9, 6.10, 6.14). The synthesis is plausible despite

the absence of the use of any geometry or domain knowledge. Not only do the sharp shad-

ows on the face move as expected, but the projected shadow behind the head also moves in

a plausible manner. The training video of size 105x130 was used to synthesize 28 frames of

size 100x125 from the target frame using patches of size 10x10x5 with 30 correlation links.

The video sequence is available at http://www.psi.toronto.edu/∼vincent/patchcorr.html.
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Test Image

Without long-range correlations

With long-range correlations

Figure 6.6: The necessity for long-range correlations in patch matching. The same ex-

periment done in Fig. 6.5 is performed here with a different test image. Synthesis results

with and without long-range patch correlations are shown. See the website for the video.
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Training Set

Test Image

Figure 6.7: Changing the illumination of cloth. Given a single test image of draped cloth

and a guiding sequence, the illumination of the single image is changed. Both the training

set and the test image were of size 150x150, from which 74 frames were extrapolated using

patches of size 15x15x5 with 50 correlation links. The video result can be found on the

website.
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6.5.3 Image walk-through

The same algorithm can be used in a variety of other synthesis applications. In Fig. 6.8,

walking through a given image of a hallway is simulated given a training video. Note that

the image is not simply enlarged, as parallax effects are apparent. As with the previous

applications, no knowledge of geometry or domain knowledge is given to the algorithm.

The patch correlations are sufficient to generate a plausible synthesis. The synthesis is

blurry, but shows evidence of the transfer of the motion pattern. The short amount

of training data and the extreme differences in the appearance of the hallway in the

training video and test image lead to many patches being averaged that do not agree in

their pixel values, leading to a blurry result. Additional training data and incorporating

invariances beyond translation and illumination would improve the result. Nonetheless,

the long-range correlations still guides the model to achieve a promising result.

6.6 Conclusion

We have introduced a powerful new patch-based model that accounts for the varying geo-

metric configurations of object features to describe learnable probability density functions

of visual data. The representation power of our model has been illustrated in a variety

of tasks including multiple object registration and detection, as well as extreme missing

data problems, such as relighting and walking through an image, where a single image

frame is extrapolated to a video sequence, the video results of which can be found on

the project webpage6. These tasks can be achieved without explicitly incorporating do-

main knowledge because our simple data-driven model captures sufficiently short- and

long-range correlations among the data patches.

6http://www.psi.toronto.edu/∼vincent/patchcorr.html
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Training Set

Test Image

Figure 6.8: Walking through an image. Given a single image of a hallway, it is desired to

mimic walking through the scene. Instead of just enlarging the image, it should appear

as if the camera is moving down the hallway. This effect is achieved by quilting patches

from a training sequence utilizing correlation links between patches to aid in matching.

Patches of size 5x5x3 with 20 random correlation links were used to synthesize a plausible

movement of walls, lights, and fixtures given the single 180x120 seed frame. See the video

on the website for the full effect.



Chapter 7

Conclusion

This thesis has introduced two broadly applicable, principled, and efficient patch-based

models for data processing applications. The power of these models have been demon-

strated across a number of varied applications even without the use of any domain specific

knowledge. Why these models work at all is because of their principled probability mod-

els.

The epitome model is a patch-based probability model that is learned by compiling

together a large number of examples of patches from input data, and has a variety of data

processing applications. This thesis has extended the epitome model in several ways to

allow it to be used as a patch model platform for analyzing visual data and performing

various tasks with the data.

The epitome size and patch size used in the epitome model was studied and by exam-

ining natural image statistics between the epitome and the original image, some guidance

can be provided as to the appropriate values for these parameters. This technique works

because the goal of the epitome model is to contain the important features of the original

image. This work could be extended by using these natural image statistics to automat-

ically determine an appropriate epitome and patch size for a given image. The size of

the epitome could also be grown dynamically during the learning procedure based on its
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ability to model the statistics of the original image.

Of practical concern to using the epitome model is computational complexity, as many

patch comparisons are required to be performed during both learning and inference. A

novel algorithm, the shifted cumulative sum algorithm, was introduced that scales better

and is an order of magnitude faster than other known techniques. Particularly powerful

is its ability to accommodate multiple patch sizes and shapes simultaneously. Further,

the ability to execute this algorithm in parallel allows it to take advantage of multi-core

processors and distributed cloud computing. With the advance in graphics processing

units, future work adapting the patch comparison algorithm to run on these computing

units could further improve performance.

The shifted cumulative sum algorithm makes it practical to extend the epitome model

beyond 2D patches. Video epitomes were introduced as an extension to the basic image

epitome model by adding ‘time’ as the third dimension to the patches from a video.

The model was extended further to allow the video epitome to be trained directly on

corrupted or degraded data, whereby the missing information would be filled in through

repetitions in the data. Applications of video epitomes for video super-resolution, video

interpolation, object removal, and denoising were demonstrated. The epitome model

could be generalized further to incorporate other data besides pixel data such as descrip-

tors in order to provide invariances such as rotation, scale, colour, and lighting in order

to increase its modeling power.

Finally, this thesis introduced a powerful new patch-based model that accounts for

the varying geometric configurations of object features to describe learnable probability

density functions of visual data. This power of this model, when integrated with the epit-

ome model, was demonstrated on a variety of tasks including multiple object registration

and detection, as well as extreme missing data problems, such as relighting and walking

through an image, where a single image frame is extrapolated to a video sequence. While

all these applications of the models presented in this thesis are impressive on their own,
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even more impressive is that these tasks can be achieved without explicitly incorporating

domain knowledge because these simple data-driven models capture sufficiently short-

and long-range correlations among the data patches. Incorporating this powerful patch-

based model in the epitome proved fruitful and future work would include adapting the

model to work within other patch-based models.
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