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Abstract 
 

This paper describes a system capable of classifying 
stochastic, self-affine, nonstationary signals produced by 
nonlinear systems.  The classification and analysis of 
these signals is important because they are generated by 
many real-world processes.  The first stage of the signal 
classification process entails the transformation of the 
signal into the multifractal dimension domain, through 
the computation of the variance fractal dimension 
trajectory (VFDT).  Features can then be extracted from 
the VFDT using a Kohonen self-organizing feature map.  
The second stage involves the use of a complex domain 
neural network and a probabilistic neural network to 
determine the class of a signal based on these extracted 
features.  The results of this paper show that these 
techniques can be successful in creating a classification 
system which can obtain correct classification rates of 
about 87% when performing classification of such signals 
with an unknown number of classes. 
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1. INTRODUCTION 
 

This paper investigates the development of a software 
system that is capable of classifying stochastic, self-affine, 
nonstationary signals that originate from nonlinear 
systems.  Such signals are often multivariate, and the 
system described in this paper will have the ability to take 
these multivariate signals into account during the 
classification process. 

The features used for classification are based on a 
temporal multifractal characterization of the signal,  

which is achieved through the computation of its variance 
fractal dimension trajectory (VFDT) [Kins94].  This 
translation into the temporal multifractal dimension 
domain emphasizes the underlying complexity of the 
signal, and more importantly for classification, has a 
normalizing effect.  The classification based on these 
features is performed by a complex domain neural 
network that can operate upon signal features from 
separate, but strongly correlated signals without losing the 
correlation between the signals.  Furthermore, complex 
domain neural networks often generalize more effectively 
and train faster than their real-valued counterparts. 

While the classification system implemented for this 
paper is not specific to any particular signal, spatio-
temporal recordings of a Siamese fighting fish when 
presented with various stimuli during dishabituation 
experiments were used to evaluate the performance of the 
system.  A stereoscopic camera system was used to track 
and record the three dimensional Cartesian co-ordinates 
of the fish over an eight hour period.  A sample of this 
dishabituation signal is shown in Fig. 1.  Stimuli applied 
during these experiments were on the Y-Z plane at X = 0 
and on the X-Y plane at approximately Z = 225.  Since 
there were no stimuli along the Y-axis and it was the least 
accurate because it was resolved indirectly through the 
stereoscopic vision, the Y-component of the signal was 
not used for classification in this paper [ChCa03].  An 
added difficulty in analyzing these signals was that they 
contained an unknown number of classes, but this was 
overcome using clustering algorithms. 

An overview of the techniques used in this paper for 
classification is provided in Sec. 2.  Details of the 
experiments performed with the dishabituation signals 
and the classification system are presented in Sec. 3. 
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2. BACKGROUND 

 
2.1 Variance Fractal Dimension Trajectory 

 
The feature extraction technique considered for this 

paper is a translation into the temporal multifractal 
dimension domain by computing a VFDT [Kins94].  An 
advantage of using the variance fractal dimension 
trajectory for classification is that it emphasizes the 
underlying complexity of the signal, thus helping to 
provide the unique identification for each class.  Another 
advantage is that the transformation provides a 
normalizing effect because the theoretical range of 
fractional dimensionality of Euclidean one-dimensional 
signal is between 1 and 2. 

The variance fractal dimension is based on 
calculations involving the variance of the amplitude 
increments of a signal taken at different scales.  The 
amplitude increments of a signal, x(t), over a time interval 
∆t follow the following power law relationship 
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where H is the Hurst exponent.  The Hurst exponent can 
be calculated via a log-log plot using 
 

 
0

log[ ( ) ]1lim
2 log( )

t
t

Var x
H

t
∆

∆ →

∆
=

∆
 (2) 

 

The variance fractal dimension, Dσ, is then given by 
 

 1D E Hσ = + −  (3) 
 

where E is the Euclidean dimension. 
The process of calculating the VFDT of a signal 

involves computing the variance fractal dimension in a 
sliding window fashion.  The selection of the window size 
is based on the stationarity of the signal.  This 
representation of a signal by its VFDT acts as the features 
used to perform classification. 

 
2.2 Complex Domain Neural Network 

 
Complex domain three-layer feedforward neural 

networks are used in this paper to perform classification 
based upon the variance fractal dimensions. 

Neural networks that work with real-valued inputs 
are sufficient for most situations, but when the inputs to 
the neural network are naturally represented as complex 
numbers, it is advantageous to use a neural network that 
takes this representation into account.  Complex valued 
data can be provided to a real domain neural network by 
separating the components of the complex values and 
providing them separately as inputs; however, the strong 
correlation between the components is lost.  While in 
theory, real valued neural networks have the same ability 
as complex domain neural networks, in practice, the 
training of complex domain neural networks is typically 
faster and they often generalize better, especially when 
only a sparse training set is available. 

The architecture of complex domain three-layer 
feedforward neural networks are similar to their real 
domain counterparts; the main differences are that each 
input value and weight is a complex number consisting of 
both a real and imaginary part.  The activation function 
used in this paper for the neurons is a scaled version of 
the hyperbolic tangent function, tanh(1.5x), which is 
applied to the magnitude of the complex valued input and 
then multiplied by the unit vector of the input so that the 
output of the activation function maintains the same 
direction as the input [Mast94]. 

This paper uses a single output neuron for each class 
in order to perform classification.  Since the output 
neurons result in binary decisions for the inclusion or 
exclusion of an input to a particular class, it is inefficient 
to employ complex-valued outputs as it does not aid in 
making the classification decision.  Thus, for 
classification purposes, the imaginary part of the output of 
these neurons is discarded and the decisions are based 
solely upon the real part of the output. 

 
Fig. 1.  Fish trajectory signal along 

the X (a), Y (b), and Z(c) directions.

(a) 

(c) 

(b) 
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The training of the network is performed using the 
standard backpropagation algorithm extended to operate 
with complex values.  The partial derivates of the error of 
the output with respect to the real and imaginary parts of 
the weights is used as the error gradient to indicate the 
direction with which to modify the weights.  The 
modifications to the weights in each epoch is given by 
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where ε is the output error, w is the weight in the 
network, the real and imag subscripts indicate the real 
and imaginary parts of the weights, and α is the learning 
rate. 
 
2.3 Probabilistic Neural Network 

 
An alternative to the complex domain neural network 

for classification is the probabilistic neural network.  The 
probabilistic neural network (PNN) is an implementation 
of the Bayes optimal decision rule in the form of a neural 
network [Spec88].  PNNs have a number of advantages 
over traditional neural networks in that they tend to train 
orders of magnitude faster and their classification 
accuracy asymptotically approaches Bayes optimal. 
 
2.4 Kohonen Self-Organizing Feature Map 

 
Kohonen self-organizing feature maps (SOFMs) 

[Koho84] can be used as a clustering algorithm to 
determine the classes of signals.  SOFMs can also be used 
to perform feature extraction upon the VFDT prior to 
classification.  SOFMs are neural networks that employ 
unsupervised competitive learning algorithms.  These 
neural networks are referred to as topology-preserving in 
that the neighbourhood relations of the data are preserved 
and structure is imposed upon the neurons in the network.  
This clustering of the data based on their relations allows 
for the discovery of the underlying structure of the data. 
 

3. EXPERIMENTAL WORK 
 

3.1 Experiment Setup 
 
The dishabituation signals were segmented into 

lengths of 4096 samples and the classes of each of the 
segments were determined through clustering of the X 
and Z-axis segments in the time domain with a Kohonen 
self-organizing feature map [ChCa03].  To train the 

classification system, a training set of 612 segments from 
9 recordings was used.  The testing set applied to the 
system was made up of 544 segments from 8 recordings 
that were not used for the training set. 

No filtering was performed upon the signals prior to 
the computation of the VFDTs used to construct the 
training and testing sets.  The VFDTs were computed 
using a window size of 2048 samples, the largest window 
in which the fractal dimension of the signals remained 
constant.  A window displacement of 256 samples was 
used, as it was discovered to give a good resolution of the 
VFDT. 

Figure 2b shows the VFDT of the signal of Fig. 2a.  
The first thing to note about the VFDT plot is that the 
fractal dimensions of the signal changes, indicating that it 
is multifractal in time.  It can further be noted that the 
samples of the VFDT are normalized dimensions between 
1 and 2, which is essential for the classification process.  
Additionally, the VFDT plots visually seem to correspond 
to the time domain plots in that they tend to emphasize 
some of the characteristics in the original signal; the most 
exemplary characteristic being the initial large changes in 
the VFDT signals which correspond to the irregular 
motion of the fish as seen in the time domain plot. 

 
3.2 CNN Experiment 

 
The results of the classification of the input vectors in 

the testing set using the complex domain neural network 
(CNN) are shown in the confusion matrix in Table 1.  
Overall, the classification system performed well at a 
correct classification rate of nearly 87%. 

The size of each class in the training and testing sets 
were proportional to their frequency of occurrence in the 
signals.  While the first class had the smallest 
representation, it was so distinct that all but one of input 

 
Fig. 2.  Fish trajectory signal (a) and its VFDT (b).

(a) 

(b) 
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vectors of this class were correctly classified.  Input 
vectors from the remaining classes were also classified at 
a high rate, giving confidence to the abilities of the 
system.  As the development of the testing set involved 
randomness in selecting the input vectors to use for 
testing, the 95% confidence interval for the classification 
rate is provided under the confusion matrix in order to 
bound the true classification rate of the system. 
 
3.3 Additional Experiments 
 

Additional experiments were performed using a PNN 
as the classifier and the results are shown in Table 2.  For 
the first experiment, the X-axis fractal dimensions were 
used for classification by the PNN.  The second 
experiment was identical to the first, except that the Z-
axis signals were used.  In both experiments, the results 
were quite poor.  However, by utilizing both the X and Z-
axis fractal dimensions for classification, a significantly 
higher classification rate was achieved. 

While the results for this last experiment gave 
slightly higher classification rates than those with the 
CNN, they are comparable when confidence intervals are 
taken into account.  However, there were some differences 
in the training and execution times.  The PNN trained 
two orders of magnitude faster than the CNN, while the 
trained CNN performed classification nearly an order of 
magnitude faster than the PNN. 

These experiments were also repeated using SOFMs 
to perform feature extraction upon the VFDT prior to 
classification.  For most cases, the classification results 
when using the SOFMs were slightly lower than when the 
SOFMs were excluded, but they are essentially equal 
when confidence intervals are taken into account.  Thus, 
the classification rates remained almost the same despite 
the fact that fewer features were used for classification. 

Further details of these additional experiments can be 
found in [ChCa03]. 
 

4. CONCLUSIONS 
 

This work was done to demonstrate the feasibility of 
classification of self-affine signals by using variance 
fractal dimensions and complex domain neural networks.  
This paper has shown that a multifractal characterization 
of self-affine signals through variance fractal dimensions 
is an effective means of feature extraction as it provided a 
sufficient metric upon which to classify the signals used 
in this paper.  Furthermore, the use of complex domain 
neural networks upon two separate, yet strongly correlated 
signals were used and shown to be effective in classifying 
these signals based on its variance fractal dimensions. 
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Table 2.  PNN experiments. 

Classification Rate (%) 
Signal 

1 2 3 4 

Average 
Classification 

Rate (%) 
X 100 92 59 50 67 

Z 63 29 47 91 58 

X & Z 100 95 84 95 91 

Table 1.  CNN experiment confusion matrix. 

Experimental  

1 2 3 4 

Correct 
Classification 

Rate (%) 
1 23 0 0 1 95.83 

2 3 127 8 8 86.99 

3 0 11 151 26 80.32 

Ex
pe

ct
ed

 

4 0 13 3 170 91.40 

Average Correct Classification Rate:  86.58% 

95% Confidence Interval:  [83.72%, 89.44%] 


